I. CALL TO ORDER – Steve Madden, Chair

II. ROLL CALL – Deborah Breede, Secretary

III. APPROVAL OF MINUTES – November 5, 2014

IV. CONSENT AGENDA – attached

V. PRESIDENT, PROVOST, AND OTHER ADMINISTRATIVE REPORTS

VI. EXECUTIVE COMMITTEE REPORT

Steve Madden, Chair, to present the Executive Committee Report.

A. Administrative Actions 05 - 09 were generated and approved without stipulations from the November 5, 2014 meeting. Refer to the November 5, 2014 Order of Business for complete details.

AA 05: Approval of remaining items on the November 5, 2014 Consent Agenda (ENGL 475 and ENGL 477 were removed from the consent agenda, denied electronically, and returned to the Department of English at the department chair’s request).

AA 06: Approval for the statement of correction for revisions to the Middle Level Education major’s Social Studies Concentration that were approved on AA-11 2013-2014.

AA 07: Approval to amend the Core Curriculum Committee’s membership in the Faculty Manual.

AA 08: Approval of the 2016-2017 Academic Calendar.

AA 09: Approval of the 2017-2018 Academic Calendar.

VII. COMMITTEE REPORTS

VIII. OLD BUSINESS
XI. NEW BUSINESS

A. Faculty Athletics Representative

1. Mark Mitchell will present the yearly update on Academic Performance and Graduation Information for CCU Student-Athletes. The PowerPoint Presentation is attached.

B. Academic Affairs Committee

1. **Motion to change the Academic Affairs Committee’s membership description in the Faculty Manual (moved and seconded out of committee):**

2014-2015 Faculty Manual, page 18

F. Regular (Standing) Faculty Committees

1. Academic Affairs

 Membership: Nine to eleven faculty (two elected from each College, one of whom must be a tenured faculty member, and one elected from the Library); two students (non-voting); and Ex-Officio: Provost’s designee, Vice President of Enrollment Management, Admission’s Office designee, and Registrar. The Chair will be elected from among the tenured voting elected representatives members who have served for at least two years.

 The information below will not be in the Faculty Manual.

 Justification: Due to administrative changes at the level of vice president, the current description of the membership of the Academic Affairs Committee in the Faculty Manual (2014-15) is in need of change. Specifically, there is no longer a Vice President of Enrollment Management. Instead, the appropriate equivalent administrator is currently titled as the Director of Admissions. Therefore, we are changing the descriptor for the committee member who will represent admissions on the committee. Additionally, the chair of the committee should have both experience and tenure given the nature of the responsibilities of the chair.

2. **Motion to approve a Bachelor of Arts in Digital Culture and Design (moved and seconded out of committee):**

 College of Humanities and Fine Arts, Office of the Dean
 Proposal for a new undergraduate program.

 Title of proposed program and degree: Bachelor of Arts in Digital Culture and Design.
 Semester and year of first graduates: Spring 2019.
 Number of students projected in first two semesters: 19.
Proposed Catalog Description:

DIGITAL CULTURE AND DESIGN MAJOR
Degree: Bachelor of Arts

MISSION STATEMENT
The B.A. in Digital Culture and Design is designed to provide students with the opportunity to pursue interdisciplinary study in the humanities, arts, and social sciences, with a focus on developing critical perspectives and practical skill sets in creating and utilizing digital media and content.

The mission of the Digital Culture and Design program is to prepare students to conduct advanced research across disciplinary boundaries, to synthesize information, and to present that information in a range of digital formats that suit the needs of a variety of audiences. Students in the B.A. in Digital Culture and Design program investigate the reflexive imbrication of technology and humanities and fine arts. They practice critical thinking skills not only on their assignments within the foundational theory and methods courses, but in the design and completion of digital projects in each of the advanced methods courses and in either an internship or practicum experience. The development of these skills culminates with their individually-designed capstone projects. They become adept at collaboration with colleagues in other fields of study; they investigate and pursue practical applications of disciplinary knowledge through digital technologies and content creation; they become more proficient in writing and in representing humanistic knowledge through other forms of media; they utilize technology for presentations, visual media and print documents; and they learn professional procedures appropriate for a variety of both public sector and private industry settings.

Students majoring in Digital Culture and Design must earn a C or above in each course used to satisfy requirements for the Major.

STUDENT LEARNING OUTCOMES
Students who complete the requirements for a degree in Digital Culture and Design will be able to:

1. Read comparatively and critically analog and digital texts, identifying, analyzing, and critiquing relevant cultural, aesthetic, and technical/structural themes.
2. Articulate concisely through written and oral expression the issues (e.g. social, cultural, aesthetic, technical, and economic) common to digital humanities research.
3. Collaborate with peers through not only the use of new technologies but also an agreed upon structure and democratic workflow that employs critical and affective feedback for revision of concepts and project development.
4. Demonstrate applied fluency and facility with the concepts, projects, and applications within the digital humanities.
5. Articulate an understanding of the relevance of the medium of code to humanistic topics.
6. Synthesize text/codes, images, and narratives across a variety of mediated formats (including but not limited to written essays, online forums, human-machine performance platforms, hypertexts, computer models, and web interfaces).
7. Understand, analyze, and use data.
8. Utilize the basic elements of coding to design elementary markup artifacts and real time applications.

DIGITAL CULTURE AND DESIGN MAJOR (120 Credits)
I. CORE CURRICULUM (39-44 Credits) ... 39-44

II. FRESHMAN GRADUATION REQUIREMENT (0-3 Credits)
Minimum grade of C is required.
UNIV 110 The First-Year Experience ... 0-3
UNIV 110 is required for all new entering freshmen and for new transfer students with fewer than 12 transfer credit hours unless the transfer student has satisfactorily completed a college transition course.

III. FOUNDATION COURSES (18 Credits)
Theory (9 Credits)
DCD 100 Technology and Humanity ... 3
DCD 101 Humanities in the Digital Age .. 3
DCD 102 Information Design .. 3

Methods (9 Credits)
DCD 200 Introduction to Digital Humanities ... 3
DCD 201 Coding for Humanists ... 3
DCD 202 Introduction to Digital Sources ... 3

IV. MAJOR REQUIREMENTS (36 Credits)
Digital Humanities Sequence (15 Credits)
ENGL 231 Film, New Media, and Culture ... 3
DCD 309 Interactivity and Culture ... 3
Choose one from the following: (3 Credits) ... 3
 DCD 312 Social Media (3)
 JOUR 350 Interactive Media and Society (3)
DCD 316 Digital Resources in the Humanities ... 3
DCD 345 Knowledge Production and Digital Representation 3

Methods Sequence (15 Credits)
Choose three from the following: (9 Credits) ... 9
 DCD 301 Text Methods (3)
 DCD 302 Visual Methods (3)
 DCD 303 Sound and Motion Methods (3)
 DCD 304 Interactive Methods (3)
Choose two from the following: (6 Credits) ... 6
 GEOG 310 Digital Cartography (3)
GEOG 311 Earth Observation (3)
HFA 391 Press Project Workshop (1) (repeated for 3 credit hours)
HIST 396 Manuscripts and Archives: An Introduction (3)
HIST 397 Digital History (3)
JOUR 304 Writing for Interactive Journalism (3)
JOUR 305 Journalism News Writing and Reporting for Media (3)
JOUR 314 Video Journalism Production (3)
MCJ 391 Recording Technology I (3)
MCJ 392 Recording Technology II (3)
POLI 305 Introduction to Empirical Political Inquiry (3)
THEA 255 Computer Aided Drafting and Design (3)

Practicum/Internship (3 Credits)
Choose one from the following: (3 Credits) ..3
DCD 495 Internship (3)
DCD 496 Practicum (3)

Capstone (3 Credits)
DCD 488 Capstone Course...3

V. Humanities Content (12 Credits)
 Take four upper-level humanities courses related to the topic of the capstone project.

VI. Electives (7-16 Credits) ... 7-16

TOTAL CREDITS REQUIRED ...120

3. Motion to approve a Bachelor of Science in Engineering Science (moved and seconded out of committee):

College of Science, Department of Chemistry and Physics
Proposal for a new undergraduate program.

Title of proposed program and degree: Bachelor of Science in Engineering Science.
Semester and year of first graduates: Spring 2017.
Number of students projected in first two semesters: 70.

Proposed Catalog Description:

ENGINEERING SCIENCE MAJOR
Degree: Bachelor of Science

MISSION STATEMENT
The mission of the Engineering Science program is to train problem solvers who can integrate science and engineering principles. Engineering science is the study of the
combined disciplines of engineering, the applied sciences, and mathematics. This combination of disciplines results in graduates that can bring a deep understanding of science and broad training in engineering design and practice together to solve new challenges. The focus of the program is on general problem solving combined with fundamental scientific and engineering skills and content knowledge, resulting in graduates having the ability to keep pace with the continuous innovations occurring with technology, and the multidisciplinary approach required for many emerging technical challenges. The program’s faculty is committed to providing meaningful undergraduate experiences for both majors and non-majors through high-quality, student-centered teaching and undergraduate research/design mentoring. Students completing a degree in Engineering Science should be well prepared for either a general engineering career or graduate school in engineering, applied science, or a related discipline.

STUDENT LEARNING OUTCOMES
After completing the program in Engineering Science, students will be able to:

1. Apply knowledge of mathematics, science, and engineering.
2. Design and conduct experiments, as well as to analyze and interpret data.
3. Design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability.
4. Function on multidisciplinary teams.
5. Identify, formulate, and solve engineering problems.
6. Demonstrate professional and ethical responsibility.
7. Communicate effectively.
8. Understand the impact of engineering solutions in a global, economic, environmental, and societal context.
10. Apply knowledge and skills to contemporary issues.
11. Use the techniques, skills, and modern engineering tools necessary for engineering practice.

The Engineering Science program at CCU focuses on the application of the applied sciences integrated with engineering principles to create technical solutions to problems. Through either a major or minor, students can easily merge their interest in engineering with other disciplines taught in the College of Science such as biology, chemistry, computer science, marine science, mathematics and/or physics. Engineering Science students can also pursue one of the dual-degree engineering programs with either Clemson University or Horry Georgetown Technical College.

All students pursuing a major in Engineering Science complete a foundation in mathematics and basic sciences, followed by more advanced courses in engineering and applied science. The major requirements focus on the following core academic competencies: (1) problem solving and communication, (2) epistemological methodologies, (3) design practice, and (4) technical practice. Students pursuing the minor in Engineering Science complete a basic curriculum in general engineering. Students must earn a grade of **C or better** in all Foundation and Major Requirement courses.
ENGINEERING SCIENCE MAJOR (120 Credits)

I. CORE CURRICULUM (39-44 Credits) .. 39-44

II. FRESHMAN GRADUATION REQUIREMENT (0-3 Credits)
 Minimum grade of C is required.
 UNIV 110 The First-Year Experience .. 0-3
 UNIV 110 is required for all new entering freshmen and for new transfer students with fewer than 12 transfer credit hours unless the transfer student has satisfactorily completed a college transition course.

III. FOUNDATION COURSES (23-41 Credits)*
 ENGR 101* Introduction to Engineering 3
 PHYS 211/211L Essentials of Physics I/Laboratory 4
 PHYS 212/212L Essentials of Physics II/Laboratory 4
 CHEM 111/111L* General Chemistry I/Laboratory 4
 MATH 160* Calculus I .. 4
 MATH 161 Calculus II .. 4
 MATH 260 Calculus III ... 4
 MATH 320 Elementary Differential Equations 3
 PHIL 102* Introduction to Ethics .. 3
 Choose one from the following: (3-4 Credits) 3-4
 MATH 174 Introduction to Discrete Mathematics (3)
 MATH 242/242L Modeling for Scientists I/Laboratory (4)
 MATH 344 Linear Algebra (3)
 STAT 201/201L* Elementary Statistics/Laboratory (4)
 Choose one from the following (4 Credits) 4
 PHYS 214/214L Fundamentals of Physics II/Laboratory (4)
 CSCI 130/131L Introduction to Computer Science/Algorithmic Thinking (4)
 CHEM 112/112L General Chemistry II/Laboratory (4)
 MSCI 111/111L* Introduction to Marine Science/Laboratory (4)
 BIOL 121/121L* Biological Science I/Laboratory (4)
 GEOL 111/111L* Physical Geology/Laboratory (4)

*Credits for courses taken as part of the Core Curriculum are not counted elsewhere in the major.

IV. MAJOR REQUIREMENTS (43-48 Credits)
 ENGR 201 Engineering Problem Solving 3
 ENGR 202 Engineering Graphics .. 3
 ENGR 234 Statics .. 3
 ENGR 235 Electric Circuits .. 3
 PHYS 310 Mathematical Methods in Physics 3
 PHYS 351 Applied Physics Workshop I ... 3
 PHYS 352 Applied Physics Workshop II 3
 ENGR 398 Project Management and Communication 1
 ENGR 399 Integrated Science and Design 3
ENGR 499 Senior Design...3
Choose five from the following: (15-20 Credits) 15-20
 ENGR 321 Electronics (3)
 ENGR 430 Fluid Dynamics (3)
 PHYS 301 Analytical Mechanics (3)
 PHYS 302 Electricity and Magnetism (3)
 PHYS 303 Quantum Mechanics (3)
 PHYS 341 Thermodynamics and Statistical Mechanics (3)
 CSCI 210 Computer Organization and Programming (3)
 CSCI 310 Introduction to Computer Architecture (3)
 CSCI 330 Systems Analysis and Software Engineering (3)
 CSCI 473 Introduction to Parallel Systems (3)
 CSCI 485 Introduction to Robotics (3)
 Other 300 level or above Science or Engineering courses with prior approval from the department (3-4 Credits)

V. ELECTIVES (0-20 Credits)..0-20

TOTAL CREDITS REQUIRED..120

C. Graduate Council Committee

 1. **Motion to approve an Ed.S. in Instructional Technology (moved and seconded out of committee):**

 College of Education, Department of Foundations, Literacy, and Technology
 Proposal for a new graduate program.

 Title of proposed program and degree: Ed.S. in Instructional Technology.
 Semester and year of first graduates: Fall 2016.
 Number of students projected in first two semesters: 40.
 Use of Technology: 100 percent online modality, primarily asynchronous delivery via the university learning management system, MOODLE.

 Proposed Catalog Description:
 The goal of the Specialist in Instructional Technology program is to provide K-12 teachers and other educational professionals advanced training in the design, development, implementation, evaluation and management of instructional technologies and their potential to improve teaching practice, learner performance and professional productivity.

 Admissions Criteria
 The Ed.S. Instructional Technology program will provide advanced training in the design, development, implementation, evaluation and management of instructional technologies and their potential to improve teaching practice, learner performance and professional productivity. The broad appeal of this program will attract candidates from a variety of employment sectors, including K-12 education, higher education, as well as corporate,
government and healthcare training. Applicants to the Ed.S. Instructional Technology program must meet the following requirements for admission:

1. A completed application form for graduate study at the university.
2. An earned Master’s degree from a regionally accredited institution with a minimum GPA of 3.0 (on a 4.0 scale).
3. Official transcripts for all undergraduate and graduate coursework from each school previously attended.
4. At least 6 credit hours of graduate coursework in Instructional Technology or related field completed within the past six years.*
5. Two letters of recommendation, one of which should be from a supervisor in a professional education or training unit.
6. Submission of a written statement of educational and career goals explaining how the Ed.S. Instructional Technology degree will be leveraged to achieve those goals.

*Applicants who do not meet criteria #4 may be provisionally admitted but must complete two masters-level Instructional Technology courses, one of which must be EDIT 604, before enrolling in Ed.S. coursework.

Curriculum
The proposed Ed.S. Instructional Technology program will require 30 credits of existing coursework delivered completely online. The content for the curriculum framework is derived from two sets of professional standards published by the International Society for Technology in Education (ISTE) and the Association for Educational Communications and Technology (AECT). Courses will be scheduled to accommodate a two year matriculation model.

EDIT 700 Principles of Instructional Design ...3
EDIT 704 Technology in Curricula...3
EDIT 710 Instructional Technology Tools...3
EDIT 720 Psychology of Instructional Technology ...3
EDIT 740 Product Design and Development I ...3
EDIT 744 Graphic Design for Instruction ..3
EDIT 750 Product Design and Development II ...3
EDIT 760 Instructional Technology Leadership ...3
EDIT 770 Field Experiences in Instructional Technology3
EDIT 780 Seminar in Instructional Technology ..3

X. QUASI COMMITTEE OF THE WHOLE
XI. OTHER
XII. ANNOUNCEMENTS
XIII. GOOD OF THE ORDER
XIV. ADJOURNMENT