Moments and Centers of Mass

Moments and Center of Mass: One-Dimensional System

Let the point masses $m_{1}, m_{2}, \ldots, m_{n}$ be located at $x_{1}, x_{2}, \ldots, x_{n}$.

1. The moment about the origin is $M_{0}=m_{1} x_{1}+m_{2} x_{2}+\cdots+m_{n} x_{n}$.
2. The center of mass is $\bar{x}=\frac{M_{0}}{m}$, where $m=m_{1}+m_{2}+\cdots+m_{n}$ is the total mass of the system.

Moments and Center of Mass: Two-Dimensional System

Let the point masses $m_{1}, m_{2}, \ldots, m_{n}$ be located at $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)$.

1. The moment about the y-axis is $M_{y}=m_{1} x_{1}+m_{2} x_{2}+\cdots+m_{n} x_{n}$.
2. The moment about the x-axis is $M_{x}=m_{1} y_{1}+m_{2} y_{2}+\cdots+m_{n} y_{n}$.
3. The center of mass (\bar{x}, \bar{y}) is
$\bar{x}=\frac{M_{y}}{m}$ and $\bar{y}=\frac{M_{x}}{m}$
where $m=m_{1}+m_{2}+\cdots+m_{n}$ is the total mass of the system.

Moments and Center of Mass of a Planar Lamina

Let f and g be continuous functions such that $f(x) \geq g(x)$ on $[a, b]$ and consider the planar lamina of uniform density ρ bounded by the graphs of $y=f(x), y=g(x)$, and $a \cdot x \cdot b$.

1. The moments about the $x-$ and y-axes are

$$
\begin{aligned}
& M_{x}=\frac{\rho}{2} \int_{a}^{b}[f(x)+g(x)][f(x)-g(x)] d x \\
& M_{y}=\rho \int_{a}^{b} x[f(x)-g(x)] d x
\end{aligned}
$$

2. The center of mass (\bar{x}, \bar{y}) is given by
$\bar{x}=\frac{M_{y}}{m}$ and $\bar{y}=\frac{M_{x}}{m}$
where $m=\rho \int_{a}^{b}[f(x)-g(x)] d x$ is the total mass of the lamina.
