Moments and Centers of Mass

Moments and Center of Mass: One-Dimensional System

Let the point masses m_1, m_2, \ldots, m_n be located at x_1, x_2, \ldots, x_n .

- 1. The moment about the origin is $M_0 = m_1 x_1 + m_2 x_2 + \cdots + m_n x_n$.
- 2. The center of mass is $\overline{x} = \frac{M_0}{m}$, where $m = m_1 + m_2 + \cdots + m_n$ is the total mass of the system.

Moments and Center of Mass: Two-Dimensional System

Let the point masses m_1, m_2, \ldots, m_n be located at $(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$.

- 1. The moment about the y-axis is $M_y = m_1 x_1 + m_2 x_2 + \cdots + m_n x_n$.
- 2. The moment about the x-axis is $M_x = m_1y_1 + m_2y_2 + \cdots + m_ny_n$.
- 3. The center of mass $(\overline{x}, \overline{y})$ is

$$\overline{x} = \frac{M_y}{m}$$
 and $\overline{y} = \frac{M_x}{m}$

where $m = m_1 + m_2 + \cdots + m_n$ is the total mass of the system.

Moments and Center of Mass of a Planar Lamina

Let f and g be continuous functions such that $f(x) \ge g(x)$ on [a, b] and consider the planar lamina of uniform density ρ bounded by the graphs of y = f(x), y = g(x), and $a \cdot x \cdot b$.

1. The moments about the x- and y-axes are

$$M_x = \frac{\rho}{2} \int_a^b [f(x) + g(x)][f(x) - g(x)] dx$$
$$M_y = \rho \int_a^b x [f(x) - g(x)] dx$$

2. The center of mass $(\overline{x}, \overline{y})$ is given by

$$\overline{x} = \frac{M_y}{m}$$
 and $\overline{y} = \frac{M_x}{m}$
where $m = \rho \int^b [f(x) - q(x)] dx$ is

where $m = \rho \int_{a}^{b} [f(x) - g(x)] dx$ is the total mass of the lamina.