Polar Notes

Coordinate Conversion

Polar to Rectangular $x = r \cos \theta$

 $r^2 = x^2 + y^2$

 $y = r \sin \theta$

 $\tan \theta = y/x$

Rectangular to Polar

Slope in Polar Form

If f is a differentiable function of θ , then the slope of the tangent line to the graph of $r = f(\theta)$ at the point (r, θ) is

$$\frac{dy}{dx} = \frac{dy/d\theta}{dx/d\theta} = \frac{f(\theta)\cos\theta + f'(\theta)\sin\theta}{-f(\theta)\sin\theta + f'(\theta)\cos\theta}$$

provided that $dx/d\theta \neq 0$ at (r, θ) .

Tangent Lines at the Pole

If $f(\alpha) = 0$ and $f'(\alpha) \neq 0$, then the line $\theta = \alpha$ is tangent at the pole to the graph of $r = f(\theta)$.

Area in Polar Coordinates

If f is continuous and nonnegative on the interval $[\alpha, \beta]$, then the area of the region bounded by the graph of $r = f(\theta)$ between the radial lines $\theta = \alpha$ and $\theta = \beta$ is given by

$$A = \frac{1}{2} \int_{\alpha}^{\beta} [f(\theta)]^2 d\theta = \frac{1}{2} \int_{\alpha}^{\beta} r^2 d\theta$$

Arc Length of a Polar Curve

Let f be a function whose derivative is continuous on an interval α θ β . The length of the graph of $r = f(\theta)$ from $\theta = \alpha$ to $\theta = \beta$ is

$$s = \int_{\alpha}^{\beta} \sqrt{[f(\theta)]^2 + [f'(\theta)]^2} d\theta = \int_{\alpha}^{\beta} \sqrt{r^2 + \left(\frac{dr}{d\theta}\right)^2} d\theta$$

Area of a Surface of Revolution

Let f be a function whose derivative is continuous on an interval α θ β . The area of the surface formed by revolving the graph of $r = f(\theta)$ from $\theta = \alpha$ to $\theta = \beta$ about the indicated line is as follows

1.
$$S = 2\pi \int_{\alpha}^{\beta} f(\theta) \sin \theta \sqrt{[f(\theta)]^2 + [f'(\theta)]^2} d\theta$$

About the polar axis

2.
$$S = 2\pi \int_{\alpha}^{\beta} f(\theta) \cos \theta \sqrt{[f(\theta)]^2 + [f'(\theta)]^2} d\theta$$

About the line $\theta = \frac{\pi}{2}$

Useful Integrals (a is a constant)

$$\int \cos^{2}(a\theta) \ d\theta = \frac{1}{2}\theta + \frac{1}{4a}\sin(2a\theta) + C$$

$$\int \sin^{2}(a\theta) \ d\theta = \frac{1}{2}\theta - \frac{1}{4a}\sin(2a\theta) + C$$

$$\int \sqrt{1 + \cos(a\theta)} \ d\theta = \frac{2\sqrt{2}}{a}\sin\left(\frac{a\theta}{2}\right) + C, \qquad \cos\left(\frac{a\theta}{2}\right) \ge 0$$

$$\int \sqrt{1 - \cos(a\theta)} \ d\theta = -\frac{2\sqrt{2}}{a}\cos\left(\frac{a\theta}{2}\right) + C, \qquad \sin\left(\frac{a\theta}{2}\right) \ge 0$$

$$\int \sqrt{1 + \sin(a\theta)} \ d\theta = -\frac{2}{a}\sqrt{1 + \sin(a\theta)} + C, \qquad \cos(a\theta) \ge 0$$

$$\int \sqrt{1 - \sin(a\theta)} \ d\theta = \frac{2}{a}\sqrt{1 + \sin(a\theta)} + C, \qquad \cos(a\theta) \ge 0$$

Special Polar Graphs

Limaçons

 $r = a \pm b \cos \theta$ $r = a \pm b \sin \theta$ (a > 0, b > 0)

 $\frac{a}{b} < 1$

Limaçon with

 $\frac{a}{b} = 1$ Cardioid(heart-shaped)

 $1 < \frac{a}{b} < 2$ Dimpled

 $\frac{a}{b} \geq 2$ Convex limaçon

Rose Curves

n petals if n is odd 2n petals if n is even $(n \ge 2)$

a: Distance from polar axis to the tip of the petal

$$r = a\cos n\theta$$
$$(n = 3)$$

$$r = a \cos n\theta$$
 $r = a \cos n\theta$
 $(n = 3)$ $(n = 4)$

$$r = a\sin n\theta$$
$$(n = 5)$$

 $r = a\sin n\theta$ (n = 2)

<u>Circles</u>

a: Diameter of the circle

<u>Lemniscates</u>

a: Distance from the pole to the tip of a loop

$$r = a\cos\theta$$
 $r = a\sin\theta$
Circle Circle

$$r^2 = a^2 \sin 2\theta$$

Lemniscate

 $r^2 = a^2 \cos 2\theta$ Lemniscate