Polar Notes

Coordinate Conversion

Polar to Rectangular
$x=r \cos \theta$
$y=r \sin \theta$

Rectangular to Polar
$r^{2}=x^{2}+y^{2}$
$\tan \theta=y / x$

Slope in Polar Form

If f is a differentiable function of θ, then the slope of the tangent line to the graph of $r=f(\theta)$ at the point (r, θ) is

$$
\frac{d y}{d x}=\frac{d y / d \theta}{d x / d \theta}=\frac{f(\theta) \cos \theta+f^{\prime}(\theta) \sin \theta}{-f(\theta) \sin \theta+f^{\prime}(\theta) \cos \theta}
$$

provided that $d x / d \theta \neq 0$ at (r, θ).

Tangent Lines at the Pole

If $f(\alpha)=0$ and $f^{\prime}(\alpha) \neq 0$, then the line $\theta=\alpha$ is tangent at the pole to the graph of $r=f(\theta)$.

Area in Polar Coordinates

If f is continuous and nonnegative on the interval $[\alpha, \beta]$, then the area of the region bounded by the graph of $r=f(\theta)$ between the radial lines $\theta=\alpha$ and $\theta=\beta$ is given by

$$
A=\frac{1}{2} \int_{\alpha}^{\beta}[f(\theta)]^{2} d \theta=\frac{1}{2} \int_{\alpha}^{\beta} r^{2} d \theta
$$

Arc Length of a Polar Curve

Let f be a function whose derivative is continuous on an interval $\alpha \quad \theta \quad \beta$. The length of the graph of $r=f(\theta)$ from $\theta=\alpha$ to $\theta=\beta$ is

$$
s=\int_{\alpha}^{\beta} \sqrt{[f(\theta)]^{2}+\left[f^{\prime}(\theta)\right]^{2}} d \theta=\int_{\alpha}^{\beta} \sqrt{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}} d \theta
$$

Area of a Surface of Revolution

Let f be a function whose derivative is continuous on an interval $\alpha \quad \theta \quad \beta$. The area of the surface formed by revolving the graph of $r=f(\theta)$ from $\theta=\alpha$ to $\theta=\beta$ about the indicated line is as follows

1. $S=2 \pi \int_{\alpha}^{\beta} f(\theta) \sin \theta \sqrt{[f(\theta)]^{2}+\left[f^{\prime}(\theta)\right]^{2}} d \theta \quad$ About the polar axis
2. $S=2 \pi \int_{\alpha}^{\beta} f(\theta) \cos \theta \sqrt{[f(\theta)]^{2}+\left[f^{\prime}(\theta)\right]^{2}} d \theta \quad$ About the line $\theta=\frac{\pi}{2}$

Useful Integrals

(a is a constant)

$$
\begin{array}{lll}
\int \cos ^{2}(a \theta) d \theta & =\frac{1}{2} \theta+\frac{1}{4 a} \sin (2 a \theta)+C & \\
\int \sin ^{2}(a \theta) d \theta & =\frac{1}{2} \theta-\frac{1}{4 a} \sin (2 a \theta)+C & \\
\int \sqrt{1+\cos (a \theta)} d \theta=\frac{2 \sqrt{2}}{a} \sin \left(\frac{a \theta}{2}\right)+C, & \cos \left(\frac{a \theta}{2}\right) \geq 0 \\
\int \sqrt{1-\cos (a \theta)} d \theta=-\frac{2 \sqrt{2}}{a} \cos \left(\frac{a \theta}{2}\right)+C, & \sin \left(\frac{a \theta}{2}\right) \geq 0 \\
\int \sqrt{1+\sin (a \theta)} d \theta=-\frac{2}{a} \sqrt{1+\sin (a \theta)}+C, & \cos (a \theta) \geq 0 \\
\int \sqrt{1-\sin (a \theta)} d \theta=\frac{2}{a} \sqrt{1+\sin (a \theta)}+C, & \cos (a \theta) \geq 0
\end{array}
$$

Special Polar Graphs

Limaçons
$r=a \pm b \cos \theta$
$r=a \pm b \sin \theta$
($a>0, b>0$)

$$
\begin{array}{cccc}
r=a \cos n \theta & r=a \cos n \theta & r=a \sin n \theta & r=a \sin n \theta \\
(n=3) & (n=4) & (n=5) & (n=2)
\end{array}
$$

Circles
a: Diameter of the circle
Lemniscates
a: Distance from the pole to the tip of a loop

$$
\begin{array}{cccc}
r=a \cos \theta & r=a \sin \theta & r^{2}=a^{2} \sin 2 \theta & r^{2}=a^{2} \cos 2 \theta \\
\text { Circle } & \text { Circle } & \text { Lemniscate } & \text { Lemniscate }
\end{array}
$$

