SECTION 230000 - BASIC MECHANICAL MATERIALS AND METHODS

PART 1 - GENERAL

1.1 IMPOSED REGULATIONS:

A. Applicable provisions of the State and Local Codes and of the following codes and standards in addition to those listed elsewhere in the specifications are hereby imposed on a general basis for mechanical work: codes and standards listed on the mechanical drawings.

1.2 SCOPE OF WORK:

A. Provide all labor, materials, equipment and supervision to construct complete and operable mechanical systems as indicated on the drawings and specified herein. All materials and equipment used shall be new, undamaged and free from any defects.

1.3 RELATED DOCUMENTS AND OTHER INFORMATION:

A. The general provisions of the Contract, including General and Supplementary Conditions and General Requirements, apply to the portions of work specified in each and every Section of this Division, individually and collectively.

B. It is recognized that separate sub-contracts may be instituted by THIS CONTRACT'S GENERAL CONTRACTOR with others. It is the responsibility of THIS CONTRACT'S GENERAL CONTRACTOR to completely inform, coordinate and advise those sub-contractors as to all of the requirements, conditions and information associated with providing and installing their portion of the total job.

1.4 EXISTING SERVICES AND FACILITIES:

A. Damage to Existing Services: Existing services and facilities damaged by the Contractor through negligence or through use of faulty materials or workmanship shall be promptly repaired, replaced, or otherwise restored to previous conditions by the Contractor without additional cost to the Owner.

B. Interruption of Services: Interruptions of services necessary for connection to or modification of existing systems or facilities shall occur only at prearranged times approved by the Owner. Interruptions shall only occur after the provision of all temporary work and the availability of adequate labor and materials will assure that the duration of the interruption will not exceed the time agreed upon.

C. Removed Materials: Existing materials made unnecessary by the new installation shall be stored on site. They shall remain the property of the Owner and shall be stored at a location and in a manner as directed by the Owner. If classified by the Owner's authorized representative as unsuitable for further use, the material shall become the property of the Contractor and shall be removed from the site at no additional cost to the owner.
1.5 PRODUCT WARRANTIES:

A. Provide manufacturer's standard printed commitment in reference to a specific product and normal application, stating that certain acts of restitution will be performed for the Purchaser or Owner by the manufacturer, when and if the product fails within certain operational conditions and time limits. Where the warranty requirements of a specific specification section exceed the manufacturer's standard warranty, the more stringent requirements will apply and modified manufacturer's warranty shall be provided. In no case shall the manufacturer's warranty be less than one (1) year.

1.6 PRODUCT SUBSTITUTIONS:

A. General: Materials specified by manufacturer's name shall be used unless prior approval of an alternate is given by addenda. Requests for substitutions must be received in the office of the Architect at least 10 days prior to opening of bids. Refer to the general conditions for the substitution request form and required documentation.

PART 2 - PRODUCTS

2.1 GENERAL MECHANICAL PRODUCT REQUIREMENTS

A. Standard Products: Provide not less (quality) than manufacturer's standard products, as specified by their published product data. In addition to the indication that a particular product/model number is acceptable, comply with the specified requirements. Do not assume that the available off-the-shelf condition of a product complies with the requirements; as an example, a specific finish or color may be required.

B. Uniformity: Where multiple units of a general product are required for the mechanical work, provide identical products by the same manufacturer, without variations except for sizes and similar variations as indicated.

C. Product Compatibility, Options: Where more than one product selection is specified, either generically or proprietarily, selection is Purchaser's or Installer's option. Provide mechanical adaptations as needed for interfacing of selected products in the work.

D. Equipment Nameplates: Provide a permanent operational data nameplate on each item of power operated mechanical equipment, indicating the manufacturer, product name, model number, serial number, speed, capacity, power characteristics, labels of tested compliance, and similar essential operating data.

E. Locate nameplates in easy-to-read locations. When product is visually exposed in an occupied area of the building, locate nameplate in a concealed position (where possible) which is accessible for reading by service personnel.

PART 3 - EXECUTION

3.1 PRODUCT INSTALLATION, GENERAL:
A. Except where more stringent requirements are indicated, comply with the product manufacturer's installation instructions and recommendations, including handling, anchorage, assembly, connections, cleaning and testing, charging, lubrication, startup, test operation and shut-down of operating equipment. Consult with manufacturer's technical experts, for specific instructions on unique product conditions and unforeseen problems.

B. Protection and Identification: Deliver products to project properly identified with names, models numbers, types, grades, compliance labels and similar information needed for distinct identifications; adequately packaged or protected to prevent deterioration during shipment, storage and handling. Store in a dry, well ventilated, indoor space, except where prepared and protected by the manufacturer specifically for exterior storage.

C. Permits and Tests: Provide labor, material and equipment to perform all tests required by the governing agencies and submit a record of all tests to the Owner or his representative. Notify the Architect five days in advance of any testing.

END OF SECTION 230000
SECTION 230510 – MECHANICAL COORDINATION

PART 1 - GENERAL

1.1 QUALITY ASSURANCE

A. Mechanical Coordination Drawings: Prepare a set of coordination drawings showing the coordination of the major elements, components and systems of the mechanical work, and showing the coordination of mechanical work with other work. Prepare drawings at accurate scale and sufficiently large to show locations of every item, including clearances for installing, maintaining, insulating, breaking down equipment, replacing motors and similar requirements. Drawings shall indicate coordination with all other trades including, but not limited to, lighting, structural, plumbing and architectural items. Prepare drawings to include plans, elevations, sections and details as needed to conclusively show successful coordination and integration of the work. Submit drawings for review by the Architect/Engineer.

PART 2 - PRODUCTS

2.1 MECHANICAL PRODUCT COORDINATION

A. Power Characteristics: Refer to the electrical sections of the specifications and the electrical drawings for the power characteristics available for the operation of each power driven item of mechanical equipment. The electrical design was based on the power requirements of the mechanical equipment manufacturer scheduled or specified as "basis of design." Any modifications to the electrical system that are required due to the use of an approved equivalent manufacturer shall be made at no additional cost to the owner. All changes must be clearly documented and submitted for review by the Architect/Engineer prior to purchasing equipment. Coordinate purchases to ensure uniform interface with electrical work. Refer to specification Div. 26 for additional coordination requirements.

B. Coordination of Options and Substitutions: When the contract documents permit the selection from several product options and it becomes necessary to authorize a substitution, do not proceed with purchase until coordination of interface to equipment has been checked and satisfactorily established.

PART 3 - EXECUTION

3.1 INSPECTION AND PREPARATION

A. Substrate Examination: The Installer of each element of the mechanical work must examine the condition of the substrate to receive the work, the conditions under which the work will be performed, and must notify the Contractor in writing of conditions detrimental to the proper completion of the work. Do not proceed with the work until unsatisfactory conditions have been corrected in a manner acceptable to the Installer.

B. Do not proceed with the installation of sleeves, anchors, hangers, roof penetrations and similar work until mechanical coordination drawings have been processed and released for construction. Where work must be installed prior to that time in order to avoid a project delay, review proposed installation in a project coordination meeting including all parties involved with the interfacing of the work.

3.2 CUTTING AND PATCHING

A. Structural Limitations: Do not cut structural framing, walls, floors, decks and other members intended to withstand stress, except with the Architect's or Engineer's written authorization. Authorization will be granted only where there is not other reasonable method for completing the mechanical work, and where the proposed cutting clearly does not materially weaken the structure.
B. Where authorized, cut opening through concrete (for pipe penetrations and similar services) by core drilling or sawing. Do not cut by hammer-driven chisel or drill.

C. Other work: Do not endanger or damage other work through the procedures and processes of cutting to accommodate mechanical work. Review the proposed cutting with the Installer of the work to be cut, and comply with his recommendations to minimize damage. Where necessary, engage the original Installer or other specialists to execute the cutting in the recommended manner.

D. Where patching is required to restore other work, because of either cutting or other damage inflicted during the installation of mechanical work, execute the patching in the manner recommended by the original Installer. Restore the other work in every respect, including the elimination of visual defects in exposed finishes, as judged by the Architect. Engage the original Installer to complete patching of the following categories of work:
 1. Exposed concrete finishes.
 2. Exposed masonry.
 3. Waterproofing and vapor barriers.
 4. Roofing, flashing and accessories.
 5. Interior exposed finishes and casework, where judged by the Architect to be difficult to achieve an acceptable match by other means.

3.3 COORDINATION OF MECHANICAL INSTALLATION

A. General: Sequence, coordinate and integrate the various elements of mechanical work so that the mechanical plant will perform as indicated and be in harmony with the other work of the building. The Architect/Engineer will not supervise the coordination, which is the exclusive responsibility of the Contractor. Comply with the following requirements:

B. Install piping, ductwork and similar services straight and true, aligned with other work and with overhead structures and allowing for insulation. Conceal where possible.

C. Arrange work to facilitate maintenance and repair or replacement of equipment. Locate services requiring maintenance on valves and similar units in front of services requiring less maintenance. Connect equipment for ease of disconnecting, with minimum of interference with other work.

D. Give the right-of-way to piping systems required to slope for drainage (over other service lines).

E. Piping shall be located to avoid interference with ductwork and light fixtures.

F. Drawings: Conform with the arrangement indicated by the contract documents to the greatest extent possible, recognizing that portions of the work are shown only in diagrammatic form. Where coordination requirements conflict with individual system requirements, comply with the Architect's decision on resolution of the conflict.

G. Electrical Work: Coordinate the mechanical work with electrical work, and properly interface with the electrical service. In general, and except as otherwise indicated, install mechanical equipment ready for electrical connection. Refer to the electrical sections of the specifications for electrical connection of mechanical equipment.

H. Utility Connections: Coordinate the connection of mechanical systems with exterior underground utilities and services. Comply with the requirements of governing regulations, franchised service companies and
controlling agencies. Provide a single connection for each service except where multiple connections are indicated.

3.4 COORDINATION OF MECHANICAL START-UP

A. Seasonal Requirements: Adjust and coordinate the timing of mechanical system start-ups with seasonal variations, so that demonstration and testing of specified performance can be observed and recorded. Exercise proper care in off-season start-ups to ensure that systems and equipment will not be damaged by the operation.

B. Painting and Air Distribution: Coordinate the initial cleaning and start-up of the HVAC air distribution system, to occur prior to preparatory cleaning and general interior painting and decorating on the project.

END OF SECTION 230510
SECTION 230513 - COMMON MOTOR REQUIREMENTS FOR HVAC EQUIPMENT

PART 1 - GENERAL

1.1 SUMMARY:

A. The types of work, normally recognized as electrical but provided as mechanical, specified or partially specified in this section, include but are not necessarily limited to the following:
 1. Motors for mechanical equipment.
 2. Starters for mechanical equipment.
 3. Disconnects for mechanical equipment.

B. When such items are specified in Division 23 sections to be furnished by the mechanical equipment manufacturer, such items shall conform to the requirements of this section.

1.2 SUBMITTALS:

A. Product Data: For each type of product indicated in accordance with Section 013300.

B. Shop Drawings: Include details of installation.

C. Operation and maintenance data.

1.3 QUALITY ASSURANCE:

A. Industry Standards: For electrical equipment and products, comply with applicable NEMA Standards, and refer to NEMA standards for definitions of terminology herein. Comply with National Electrical Code (NFPA No. 70, Vol 6) for workmanship and installation requirements.

1.4 COORDINATION:

A. Coordination with Electrical Work: Wherever possible, match the elements of the electrical provisions of mechanical work with similar elements of the electrical work specified in the electrical sections.

PART 2 - PRODUCTS

2.1 MOTORS:

A. Motor Characteristics: Except where more stringent requirements are indicated and except where required items of mechanical equipment cannot be obtained with a fully complying motor, comply with the following requirements for motors of mechanical work:
 1. Temperature Rating: Rated for minimum 40 degrees C environment with a maximum 50 degrees C temperature rise for continuous duty at full load.
 2. Starting Capability: Provide each motor capable of making starts as frequently as required by the automatic control system, and not less than 5 starts per hour for manually controlled motors.
 3. Phases and Current Characteristics: Provide squirrel-cage induction polyphase motors for 1/2
hp and larger, and provide capacitor start single-phase motors of 1/3 hp and smaller, except 1/6 hp and smaller may, at equipment manufacturer's option, be split-phase type. Coordinate current characteristics with power specified in the electrical sections, and with individual equipment requirements. For 2-speed motors, provide 2 separate windings on polyphase motors. Do not purchase motors until power characteristics available at locations of motors have been confirmed and until rotation directions have been confirmed.

4. Service Factor: 1.15 for polyphase motors and 1.35 for single phase motors.

5. Motor Construction: Provide NEMA Standard MG1, general purpose, continuous duty motors, Design "B" except "C" where required for high starting torque. All motors driven by VFD shall be inverter duty.

6. Frames: NEMA No. 48 or 54 to suit specific application.

7. Bearings: Ball or roller bearings with inner and outer shaft seals, regreaseable except permanently sealed where motor is normally inaccessible for regular maintenance. Where belt drive and other drives produce lateral or axial thrust in the motor, provide bearings designed to resist the thrust loading. Refer to individual electrical sections of the specifications for fractional-hp light-duty motors where sleeve-type bearings are permitted.

8. Enclosure Type: Except as otherwise indicated, provide open drip proof motors for indoor use where satisfactorily housed or remotely located during operation, and provide guarded drip proof motors where exposed to contact by employees or building occupants. Provide weather-protected Type I for outdoor use, type II where not housed. Refer to individual mechanical sections of the specifications for other enclosure requirements.

9. Overload Protection: Provide built-in thermal overload protection and where indicated, provide internal sensing device suitable for signaling and stopping the motor at the starter.

11. Name Plate: Provide metal nameplate on each motor, indicating full identification of manufacturer, ratings, characteristics, construction, special features and similar information.

12. All motors over 1 HP shall be premium efficiency.

2.2 STARTERS, ELECTRICAL DEVICES AND WIRING:

A. Motor Starter Characteristics:
 1. Enclosures: NEMA 1, general purpose enclosures with padlock ears, except in wet locations shall be NEMA 3R with conduit hubs, or units in hazardous locations which shall have NEC proper class and division.
 2. Type and size of starter shall be as recommended by motor manufacturer and the driven equipment manufacturer for applicable protection and start-up condition.
 3. Manual Switches: shall have:
 a. Pilot lights and extra positions for multi-speed motors.
 b. Overload protection: Melting alloy type thermal overload relays.
 4. Magnetic Starters:
 a. Maintained contact push buttons and pilot lights, properly arranged for single speed or multi-speed operation as indicated.
 b. Trip-free thermal overload relays, each phase.
 c. Interlocks, pneumatic switches and similar devices as required for coordination with control requirements of Division-15 Controls sections.
 d. Built-in 120 volts control circuit transformer, fused from line side, where service exceeds 240 volts.
e. Externally operated manual reset.
f. Under-voltage release or protection.
5. Motor Connections: Flexible conduit, except where plug-in electrical cords are specifically indicated.

2.3 CAPACITORS:

A. Features:
 1. Individual unit cells
 2. All welded steel housing
 3. Each capacitor internally fused
 4. Non-flammable synthetic liquid impregnant
 5. Craft tissue insulation
 6. Aluminum foil electrodes

B. KVAR size shall be as required to correct motor power factor to 90 percent or better and shall be installed on all motors 1 horsepower and larger, that have an uncorrected power factor of less than 85 percent at rated load.

C. Disconnect Switches:
 1. Fusible Switches: Fused, each phase; general duty; horsepower rated; non-removable quick-make, quick-break mechanism; dead front line side shield; solderless lugs suitable for copper or aluminum conductors; spring reinforced fuse clips; electro silver plated current carrying parts; hinged doors; operating lever arranged for locking in the "OPEN" position; arc quenchers; capacity and characteristics as indicated.
 2. Non-Fusible Switches: For equipment 2 horsepower and smaller, shall be horsepower rated; toggle switch type; quantity of poles and voltage rating as indicated. For equipment larger than 2 horsepower, switches shall be the same as fusible type.

2.4 EQUIPMENT FABRICATION:

A. General: Fabricate mechanical equipment for secure mounting of motors and other electrical items included in the work. Provide either permanent alignment of motors with equipment, or adjustable mounting as applicable for belt drives, gear drives, special couplings and similar indirect coupling of equipment. Provide safe, secure, durable and removable guards for motor drives, arranged for lubrication and similar running-maintenance without removal of guards.

PART 3 - EXECUTION

3.1 INSTALLATION:

A. Install motors on motor mounting systems in accordance with motor manufacturer's instructions, securely anchored to resist torque, drive thrusts, and other external forces inherent in the mechanical work. Secure sheaves and other drive units to motor shafts with keys and Allen set screws, except motors of 1/3 hp and less may be secured with Allen set screws on flat surface of shaft. Unless otherwise indicated, set motor shafts parallel with machine shafts.
B. Deliver wiring devices which have not been factory installed on equipment unit to Installer of electrical work for installation.

END OF SECTION 230513
SECTION 230529 - HANGERS AND SUPPORTS FOR HVAC PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Metal pipe hangers and supports.
 2. Trapeze pipe hangers.
 3. Metal framing systems.
 4. Thermal-hanger shield inserts.
 5. Fastener systems.
 6. Pipe stands.
 7. Equipment supports.

B. Related Sections:
 1. Section 230548 "Vibration and Seismic Controls for HVAC" for vibration isolation devices.
 2. Section 233113 "Metal Ducts" for duct hangers and supports.

1.3 DEFINITIONS

A. MSS: Manufacturers Standardization Society of The Valve and Fittings Industry Inc.

1.4 PERFORMANCE REQUIREMENTS

A. Professional Design Services and Certifications by Contractor: Design trapeze pipe hangers and equipment supports, including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.

B. Structural Performance: Hangers and supports for HVAC piping and equipment shall withstand the effects of gravity loads and stresses within limits and under conditions indicated according to ASCE/SEI 7.

 1. Design supports for multiple pipes, including pipe stands, capable of supporting combined weight of supported systems, system contents, and test water.
 2. Design equipment supports capable of supporting combined operating weight of supported equipment and connected systems and components.
 3. Design seismic-restraint hangers and supports for piping and equipment and obtain approval from authorities having jurisdiction.
1.5 ACTION SUBMITTALS
 A. Product Data: For each type of product indicated.

1.6 INFORMATIONAL SUBMITTALS
 A. Welding certificates.

1.7 QUALITY ASSURANCE
 A. Structural Steel Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel."
 B. Pipe Welding Qualifications: Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code.

PART 2 - PRODUCTS

2.1 METAL FRAMING SYSTEMS
 A. MFMA Manufacturer Metal Framing Systems:

 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Allied Tube & Conduit.
 b. Cooper B-Line, Inc.
 c. Flex-Strut Inc.
 d. GS Metals Corp.
 e. Thomas & Betts Corporation.
 f. Unistrut Corporation; Tyco International, Ltd.
 g. Wesanco, Inc.
 h. Or equal

 2. Stainless Steel Construction.
 3. Description: Shop- or field-fabricated pipe-support assembly for supporting multiple parallel pipes.
 5. Channels: Continuous slotted steel channel with inturned lips.
 6. Channel Nuts: Formed or stamped steel nuts or other devices designed to fit into channel slot and, when tightened, prevent slipping along channel.

 B. Non-MFMA Manufacturer Metal Framing Systems:

 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Anvil International; a subsidiary of Mueller Water Products Inc.
 b. Empire Industries, Inc.
c. ERICO International Corporation.
d. Haydon Corporation; H-Strut Division.
e. NIBCO INC.
f. PHD Manufacturing, Inc.
g. PHS Industries, Inc.
h. Or equal

2. Stainless Steel Construction.
3. Description: Shop- or field-fabricated pipe-support assembly made of steel channels, accessories, fittings, and other components for supporting multiple parallel pipes.
5. Channels: Continuous slotted steel channel with inturned lips.
6. Channel Nuts: Formed or stamped steel nuts or other devices designed to fit into channel slot and, when tightened, prevent slipping along channel.

2.2 FASTENER SYSTEMS
A. Powder-Actuated Fasteners: Threaded-steel stud, for use in hardened portland cement concrete with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.
B. Mechanical-Expansion Anchors: Insert-wedge-type, stainless-steel anchors, for use in hardened portland cement concrete; with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

2.3 EQUIPMENT SUPPORTS
A. Description: Welded, shop- or field-fabricated equipment support made from structural stainless-steel shapes.

2.4 MISCELLANEOUS MATERIALS
A. Structural Steel: ASTM A 36/A 36M, stainless-steel plates, shapes, and bars.
B. Grout: ASTM C 1107, factory-mixed and -packaged, dry, hydraulic-cement, nonshrink and nonmetallic grout; suitable for interior and exterior applications.

2. Design Mix: 5000-psi, 28-day compressive strength.

PART 3 - EXECUTION

3.1 HANGER AND SUPPORT INSTALLATION
A. Fastener System Installation:

1. Install powder-actuated fasteners for use in lightweight concrete or concrete slabs less than 4 inches thick in concrete after concrete is placed and completely cured. Use operators that are licensed by powder-actuated tool manufacturer. Install fasteners according to powder-actuated tool manufacturer's operating manual.
2. Install mechanical-expansion anchors in concrete after concrete is placed and completely cured. Install fasteners according to manufacturer's written instructions.

B. Install hangers and supports complete with necessary attachments, inserts, bolts, rods, nuts, washers, and other accessories.

D. Install lateral bracing with pipe hangers and supports to prevent swaying.

E. Install building attachments within concrete slabs or attach to structural steel. Install concrete inserts before concrete is placed; fasten inserts to forms and install reinforcing bars through openings at top of inserts.

F. Load Distribution: Install hangers and supports so that piping live and dead loads and stresses from movement will not be transmitted to connected equipment.

G. Stainless Steel Construction

3.2 EQUIPMENT SUPPORTS

A. Fabricate structural-steel stands to suspend equipment from structure overhead or to support equipment above floor.

B. Grouting: Place grout under supports for equipment and make bearing surface smooth.

C. Provide lateral bracing, to prevent swaying, for equipment supports.

D. Stainless Steel Construction

3.3 METAL FABRICATIONS

A. Cut, drill, and fit miscellaneous metal fabrications for equipment supports.

B. Fit exposed connections together to form hairline joints. Field weld connections that cannot be shop welded because of shipping size limitations.

C. Field Welding: Comply with AWS D1.1/D1.1M procedures for shielded, metal arc welding; appearance and quality of welds; and methods used in correcting welding work; and with the following:

1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
2. Obtain fusion without undercut or overlap.
3. Remove welding flux immediately.
4. Finish welds at exposed connections so no roughness shows after finishing and so contours of welded surfaces match adjacent contours.

D. Stainless Steel Construction
3.4 ADJUSTING

A. Hanger Adjustments: Adjust hangers to distribute loads equally on attachments and to achieve indicated slope of pipe.

B. Trim excess length of continuous-thread hanger and support rods to 1-1/2 inches.

3.5 HANGER AND SUPPORT SCHEDULE

A. Specific hanger and support requirements are in Sections specifying equipment.

B. Use stainless steel hangers and supports.

C. Use nonmetallic coatings on attachments for electrolytic protection where attachments are in direct contact with copper materials.

D. Use stainless-steel hangers and stainless-steel attachments.

E. Hanger-Rod Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Steel Turnbuckles (MSS Type 13): For adjustment up to 6 inches for heavy loads.
2. Steel Clevises (MSS Type 14): For 120 to 450 deg F piping installations.
3. Swivel Turnbuckles (MSS Type 15): For use with MSS Type 11, split pipe rings.
4. Malleable-Iron Sockets (MSS Type 16): For attaching hanger rods to various types of building attachments.
5. Steel Weldless Eye Nuts (MSS Type 17): For 120 to 450 deg F piping installations.

F. Building Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Steel or Malleable Concrete Inserts (MSS Type 18): For upper attachment to suspend hangers from concrete ceiling.
2. Top-Beam C-Clamps (MSS Type 19): For use under roof installations with bar-joist construction, to attach to top flange of structural shape.
3. Side-Beam or Channel Clamps (MSS Type 20): For attaching to bottom flange of beams, channels, or angles.
4. Center-Beam Clamps (MSS Type 21): For attaching to center of bottom flange of beams.
5. Welded Beam Attachments (MSS Type 22): For attaching to bottom of beams if loads are considerable and rod sizes are large.
6. C-Clamps (MSS Type 23): For structural shapes.
7. Top-Beam Clamps (MSS Type 25): For top of beams if hanger rod is required tangent to flange edge.
8. Side-Beam Clamps (MSS Type 27): For bottom of steel I-beams.
9. Steel-Beam Clamps with Eye Nuts (MSS Type 28): For attaching to bottom of steel I-beams for heavy loads.
10. Linked-Steel Clamps with Eye Nuts (MSS Type 29): For attaching to bottom of steel I-beams for heavy loads, with link extensions.
11. Malleable-Beam Clamps with Extension Pieces (MSS Type 30): For attaching to structural steel.
12. Welded-Steel Brackets: For support of pipes from below or for suspending from above by using clip and rod. Use one of the following for indicated loads:

 a. Light (MSS Type 31): 750 lb.
 b. Medium (MSS Type 32): 1500 lb.
c. Heavy (MSS Type 33): 3000 lb.

13. Side-Beam Brackets (MSS Type 34): For sides of steel beams.
14. Plate Lugs (MSS Type 57): For attaching to steel beams if flexibility at beam is required.
15. Horizontal Travelers (MSS Type 58): For supporting systems subject to linear horizontal movement where headroom is limited.

G. Spring Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Restraint-Control Devices (MSS Type 47): Where indicated to control piping movement.
2. Spring Cushions (MSS Type 48): For light loads if vertical movement does not exceed 1-1/4 inches.
3. Spring-Cushion Roll Hangers (MSS Type 49): For equipping Type 41, roll hanger with springs.
4. Spring Sway Braces (MSS Type 50): To retard sway, shock, vibration, or thermal expansion in piping systems.
5. Variable-Spring Hangers (MSS Type 51): Preset to indicated load and limit variability factor to 25 percent to allow expansion and contraction of piping system from hanger.
6. Variable-Spring Base Supports (MSS Type 52): Preset to indicated load and limit variability factor to 25 percent to allow expansion and contraction of piping system from base support.
7. Variable-Spring Trapeze Hangers (MSS Type 53): Preset to indicated load and limit variability factor to 25 percent to allow expansion and contraction of piping system from trapeze support.
8. Constant Supports: For critical piping stress and if necessary to avoid transfer of stress from one support to another support, critical terminal, or connected equipment. Include auxiliary stops for erection, hydrostatic test, and load-adjustment capability. These supports include the following types:
 a. Horizontal (MSS Type 54): Mounted horizontally.
 b. Vertical (MSS Type 55): Mounted vertically.
 c. Trapeze (MSS Type 56): Two vertical-type supports and one trapeze member.

H. Comply with MFMA-103 for metal framing system selections and applications that are not specified in piping system Sections.

I. Use powder-actuated fasteners or mechanical-expansion anchors instead of building attachments where required in concrete construction.

END OF SECTION 230529
SECTION 230548 - VIBRATION AND SEISMIC CONTROLS FOR HVAC PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 SUMMARY

A. This section includes the requirements for the following:
 1. Seismic restraints
 2. Wind restraints
 3. Vibration isolation
 4. Differential Displacement Calculations

1.2 SUBMITTALS

A. Provide Stamped calculations, project specific details, sketches, and product data cut sheets from a Registered Professional Engineer (PE) for each piece of equipment that requires wind load and/or seismic bracing. Calculations shall provide proof against catastrophic failure generated by wind load forces and seismic acceleration as outlined in Section 16 of the 2012 International Building code (IBC).

B. Provide installation instructions and drawings based on the results of the calculations generated by the PE. Installation instructions and drawings shall clearly state the location, size, and mounting technique of each piece of restraining equipment. Instructions shall also detail the necessary requirements for mounting the equipment to the restraining device and the restraining device to the structure.

C. Differential Displacement: Differential displacement calculations shall be provided for Utility and Service lines at the interface of adjacent structures or portions of the same structure that may move independently. Calculations shall be determined in accordance with ASCE 7-10 Section 13.3.2.

D. Submit in accordance with Section 013300.

1.3 COORDINATION

A. Coordinate installation and fastening type with available structure.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Mason Industries

B. Amber Booth

C. Vibration Mountings and Controls

D. Or Equal
2.2 VIBRATION ISOLATORS

A. Open Spring Isolators:
 1. Springs: Minimum horizontal stiffness equal to 75 percent vertical stiffness, with working
deflection between 0.3 and 0.6 of maximum deflection. Color code springs for load carrying
capacity.
 2. Spring Mounts: Provide with leveling devices, minimum 0.25 inch thick neoprene sound
pads, and zinc chromate plated hardware.
 3. Sound Pads: Size for minimum deflection of 0.05 inch; meet requirements for neoprene pad
 isolators.

B. Restrained Open Spring Isolators:
 1. Springs: Minimum horizontal stiffness equal to 75 percent vertical stiffness, with working
deflection between 0.3 and 0.6 of maximum deflection. Color code springs for load carrying
capacity.
 2. Spring Mounts: Provide with leveling devices, minimum 0.25 inch thick neoprene sound
pads, and zinc chromate plated hardware.
 3. Sound Pads: Size for minimum deflection of 0.05 inch; meet requirements for neoprene pad
 isolators.
 4. Restraint: Provide heavy mounting frame and limit stops.

C. Closed Spring Isolators:
 1. Type: Closed spring mount with top and bottom housing separated with neoprene rubber
stabilizers.
 2. Springs: Minimum horizontal stiffness equal to 75 percent vertical stiffness, with working
deflection between 0.3 and 0.6 of maximum deflection. Color code springs for load carrying
capacity.
 3. Housings: Incorporate neoprene isolation pad meeting requirements for neoprene pad
 isolators, and neoprene side stabilizers with minimum 0.25 inch clearance.

D. Restrained Closed Spring Isolators:
 1. Type: Closed spring mount with top and bottom housing separated with neoprene rubber
stabilizers.
 2. Springs: Minimum horizontal stiffness equal to 75 percent vertical stiffness, with working
deflection between 0.3 and 0.6 of maximum deflection. Color code springs for load carrying
capacity.
 3. Housings: Incorporate neoprene isolation pad meeting requirements for neoprene pad
 isolators, and neoprene side stabilizers with minimum 0.25 inch clearance and limit stops.

E. Spring Hangers:
 1. Springs: Minimum horizontal stiffness equal to 75 percent vertical stiffness, with working
deflection between 0.3 and 0.6 of maximum deflection. Color code springs for load carrying
capacity.
 2. Housings: Incorporate neoprene isolation pad meeting requirements for neoprene pad
 isolators.
F. Neoprene Pad Isolators:
 1. Rubber or neoprene waffle pads.

G. Seismic Snubbers:
 1. Type: Non-directional and double acting unit consisting of interlocking steel members restrained by neoprene elements.
 2. Elements: Replaceable neoprene, minimum of 0.75 inch thick with minimum 1/8 inch air gap.
 3. Capacity: 4 times load assigned to mount groupings at 0.4 inch deflection.
 4. Attachment Points and Fasteners: Capable of withstanding 3 times rated load capacity of seismic snubber.

PART 3 - EXECUTION

3.1 INSTALLATION

 A. Install in accordance with manufacturer's instructions.

3.2 FIELD QUALITY CONTROL

 A. Registered Professional Engineer, which provided calculations, shall inspect all restraints after installation and submit report and letter of acceptance prior to Substantial Completion.

END OF SECTION 230548
SECTION 230553 - IDENTIFICATION FOR HVAC EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Equipment labels.
2. Pipe labels.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

B. Equipment Label Schedule: Include a listing of all equipment to be labeled with the proposed content for each label.

1.4 COORDINATION

A. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be applied.

B. Coordinate installation of identifying devices with locations of access panels and doors.

C. Install identifying devices before installing acoustical ceilings and similar concealment.

PART 2 - PRODUCTS

2.1 EQUIPMENT LABELS

A. Metal Labels for Equipment:

1. Material and Thickness: Brass, 0.032-inch, Stainless steel, 0.025-inch, Aluminum, 0.032-inch, or, anodized aluminum, 0.032-inch minimum thickness, and having predrilled or stamped holes for attachment hardware.

2. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.

3. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.

5. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

B. Label Content: Include equipment's Drawing designation or unique equipment number, Drawing numbers where equipment is indicated (plans, details, and schedules), plus the Specification Section number and title where equipment is specified.

C. Equipment Label Schedule: For each item of equipment to be labeled, on 8-1/2-by-11-inch bond paper. Tabulate equipment identification number and identify Drawing numbers where equipment is indicated (plans, details, and schedules), plus the Specification Section number and title where equipment is specified. Equipment schedule shall be included in operation and maintenance data.

2.2 PIPE LABELS

A. General Requirements for Manufactured Pipe Labels: Preprinted, color-coded, with lettering indicating service, and showing flow direction.

B. Pretensioned Pipe Labels: Precoiled, semirigid plastic formed to cover full circumference of pipe and to attach to pipe without fasteners or adhesive.

C. Self-Adhesive Pipe Labels: Printed plastic with contact-type, permanent-adhesive backing.

D. Pipe Label Contents: Include identification of piping service using same designations or abbreviations as used on Drawings, pipe size, and an arrow indicating flow direction.

1. Flow-Direction Arrows: Integral with piping system service lettering to accommodate both directions, or as separate unit on each pipe label to indicate flow direction.

2. Lettering Size: At least 1-1/2 incheshigh.

PART 3 - EXECUTION

3.1 PREPARATION

A. Clean piping and equipment surfaces of substances that could impair bond of identification devices, including dirt, oil, grease, release agents, and incompatible primers, paints, and encapsulants.

3.2 EQUIPMENT LABEL INSTALLATION

A. Install or permanently fasten labels on each major item of mechanical equipment.

B. Locate equipment labels where accessible and visible.

END OF SECTION 230553
SECTION 230593 - TESTING, ADJUSTING, AND BALANCING FOR HVAC

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Balancing Air Systems:
 a. Constant-volume air systems.

1.3 DEFINITIONS

C. TAB: Testing, adjusting, and balancing.

D. TABB: Testing, Adjusting, and Balancing Bureau.

E. TAB Specialist: An entity engaged to perform TAB Work.

1.4 INFORMATIONAL SUBMITTALS

A. Qualification Data: Within 30 days of Contractor's Notice to Proceed, submit documentation that the TAB contractor and this Project's TAB team members meet the qualifications specified in "Quality Assurance" Article.

C. Certified TAB reports.

D. Sample report forms.

E. Instrument calibration reports, to include the following:

 1. Instrument type and make.
 2. Serial number.
 3. Application.
 4. Dates of use.
5. Dates of calibration.

1.5 QUALITY ASSURANCE

A. TAB Contractor Qualifications: Engage a TAB entity certified by AABC, NEBB, or TABB.
 1. TAB Field Supervisor: Employee of the TAB contractor and certified by AABC, NEBB, or TABB.
 2. TAB Technician: Employee of the TAB contractor and who is certified by AABC, NEBB, or TABB as a TAB technician.

B. Certify TAB field data reports and perform the following:
 1. Review field data reports to validate accuracy of data and to prepare certified TAB reports.
 2. Certify that the TAB team complied with the approved TAB plan and the procedures specified and referenced in this Specification.

D. Instrumentation Type, Quantity, Accuracy, and Calibration: As described in ASHRAE 111, Section 5, "Instrumentation."

E. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1, Section 7.2.2 - "Air Balancing."

F. ASHRAE/IESNA Compliance: Applicable requirements in ASHRAE/IESNA 90.1, Section 6.7.2.3 - "System Balancing."

1.6 COORDINATION

A. Notice: Provide seven days' advance notice for each test. Include scheduled test dates and times.

PART 2 - PRODUCTS (Not Applicable)

PART 3 - EXECUTION

3.1 TAB SPECIALISTS

A. Subject to compliance with requirements, available TAB contractors that may be engaged include, but are not limited to, the following:
 1. Palmetto Air & Water
 2. Airflow Services, LLC

3.2 EXAMINATION

A. Examine the Contract Documents to become familiar with Project requirements and to discover conditions in systems' designs that may preclude proper TAB of systems and equipment.
B. Examine systems for installed balancing devices, such as manual volume dampers and speed control devices. Verify that locations of these balancing devices are accessible.

C. Examine the approved submittals for HVAC systems and equipment.

D. Examine design data including HVAC system descriptions, statements of design assumptions for environmental conditions and systems' output, and statements of philosophies and assumptions about HVAC system and equipment controls.

E. Examine equipment performance data including fan curves.
 1. Relate performance data to Project conditions and requirements, including system effects that can create undesired or unpredicted conditions that cause reduced capacities in all or part of a system.
 2. Calculate system-effect factors to reduce performance ratings of HVAC equipment when installed under conditions different from the conditions used to rate equipment performance. To calculate system effects for air systems, use tables and charts found in AMCA 201, "Fans and Systems," or in SMACNA's "HVAC Systems - Duct Design." Compare results with the design data and installed conditions.

F. Examine system and equipment installations and verify that field quality-control testing, cleaning, and adjusting specified in individual Sections have been performed.

G. Examine test reports specified in individual system and equipment Sections.

H. Examine HVAC equipment and filters and verify that bearings are greased, belts are aligned and tight, and equipment with functioning controls is ready for operation.

I. Examine heat-transfer coils for correct connections and for clean and straight fins.

J. Examine operating safety interlocks and controls on HVAC equipment.

K. Report deficiencies discovered before and during performance of TAB procedures. Observe and record system reactions to changes in conditions. Record default set points if different from indicated values.

3.3 PREPARATION

A. Prepare a TAB plan that includes strategies and step-by-step procedures.

B. Complete system-readiness checks and prepare reports. Verify the following:
 1. Permanent electrical-power wiring is complete.
 2. Equipment and duct access doors are securely closed.
 3. Windows and doors can be closed so indicated conditions for system operations can be met.

3.4 GENERAL PROCEDURES FOR TESTING AND BALANCING

A. Perform testing and balancing procedures on each system according to the procedures contained in AABC's "National Standards for Total System Balance"; ASHRAE 111; NEBB's "Procedural Standards for Testing, Adjusting, and Balancing of Environmental Systems"; or SMACNA's "HVAC Systems - Testing, Adjusting, and Balancing" and in this Section.
 1. Comply with requirements in ASHRAE 62.1, Section 7.2.2 - "Air Balancing."
B. Cut ducts and equipment cabinets for installation of test probes to the minimum extent necessary for TAB procedures.
 1. After testing and balancing, patch probe holes in ducts with same material and thickness as used to construct ducts.
 2. After testing and balancing, install test ports and duct access doors that comply with requirements in Section 233300 "Air Duct Accessories."

C. Mark equipment and balancing devices, including damper-control positions, valve position indicators, fan-speed-control levers, and similar controls and devices, with paint or other suitable, permanent identification material to show final settings.

D. Take and report testing and balancing measurements in inch-pound (IP) units.

3.5 GENERAL PROCEDURES FOR BALANCING AIR SYSTEMS

A. Prepare test reports for both fans and outlets. Obtain manufacturer's outlet factors and recommended testing procedures. Crosscheck the summation of required outlet volumes with required fan volumes.

B. Prepare schematic diagrams of systems' "as-built" duct layouts.

C. Determine the best locations in main and branch ducts for accurate duct-airflow measurements.

D. Check airflow patterns from the outdoor-air louvers and dampers and the return- and exhaust-air dampers through the supply-fan discharge and mixing dampers.

E. Locate start-stop and disconnect switches, electrical interlocks, and motor starters.

F. Verify that motor starters are equipped with properly sized thermal protection.

G. Check dampers for proper position to achieve desired airflow path.

H. Check for airflow blockages.

I. Verify that air duct system is sealed as specified in Section 233113 "Metal Ducts."

3.6 PROCEDURES FOR CONSTANT-VOLUME AIR SYSTEMS

A. Adjust fans to deliver total indicated airflows within the maximum allowable fan speed listed by fan manufacturer.
 1. Measure total airflow.
 a. Where sufficient space in ducts is unavailable for Pitot-tube traverse measurements, measure airflow at terminal outlets and inlets and calculate the total airflow.
 2. Measure fan static pressures as follows to determine actual static pressure:
 a. Measure outlet static pressure as far downstream from the fan as practical and upstream from restrictions in ducts such as elbows and transitions.
 b. Measure static pressure directly at the fan outlet or through the flexible connection.
c. Measure inlet static pressure of single-inlet fans in the inlet duct as near the fan as possible, upstream from the flexible connection, and downstream from duct restrictions.

d. Measure inlet static pressure of double-inlet fans through the wall of the plenum that houses the fan.

3. Measure static pressure across each component that makes up an air-handling unit, rooftop unit, and other air-handling and treating equipment.

 a. Report the cleanliness status of filters and the time static pressures are measured.

4. Review Record Documents to determine variations in design static pressures versus actual static pressures. Calculate actual system-effect factors. Recommend adjustments to accommodate actual conditions.

5. Obtain approval from Architect for adjustment of fan speed higher or lower than indicated speed. Comply with requirements in HVAC Sections for adjustment of fans, belts, and pulley sizes to achieve indicated air-handling-unit performance.

6. Do not make fan-speed adjustments that result in motor overload. Consult equipment manufacturers about fan-speed safety factors. Modulate dampers and measure fan-motor amperage to ensure that no overload will occur. Measure amperage in full-speed operating mode to determine the maximum required brake horsepower.

B. Adjust volume dampers for main duct, submain ducts, and major branch ducts to indicated airflows within specified tolerances.

 1. Measure airflow of submain and branch ducts.

 a. Where sufficient space in submain and branch ducts is unavailable for Pitot-tube traverse measurements, measure airflow at terminal outlets and inlets and calculate the total airflow for that zone.

 2. Measure static pressure at a point downstream from the balancing damper, and adjust volume dampers until the proper static pressure is achieved.

 3. Re-measure each submain and branch duct after all have been adjusted. Continue to adjust submain and branch ducts to indicated airflows within specified tolerances.

C. Measure air outlets and inlets without making adjustments.

 1. Measure terminal outlets using a direct-reading hood or outlet manufacturer's written instructions and calculating factors.

D. Adjust air outlets and inlets for each space to indicated airflows within specified tolerances of indicated values. Make adjustments using branch volume dampers rather than extractors and the dampers at air terminals.

 1. Adjust each outlet in same room or space to within specified tolerances of indicated quantities without generating noise levels above the limitations prescribed by the Contract Documents.

 2. Adjust patterns of adjustable outlets for proper distribution without drafts.

3.7 PROCEDURES FOR MOTORS

A. Motors, 1/2 HP and Larger: Test at final balanced conditions and record the following data:

 1. Manufacturer's name, model number, and serial number.

4. Efficiency rating.
5. Nameplate and measured voltage, each phase.
6. Nameplate and measured amperage, each phase.
7. Starter thermal-protection-element rating.

B. Motors Driven by Variable-Frequency Controllers: Test for proper operation at speeds varying from minimum to maximum. Test the manual bypass of the controller to prove proper operation. Record observations including name of controller manufacturer, model number, serial number, and nameplate data.

3.8 PROCEDURES FOR HEAT-TRANSFER COILS

A. Measure, adjust, and record the following data for each heat transfer coil:

1. Nameplate data.
2. Airflow.
3. Entering- and leaving-air temperature at full load.
4. Voltage and amperage input of each phase at full load and at each incremental stage.
5. Calculated kilowatt at full load.
6. Fuse or circuit-breaker rating for overload protection.

3.9 TOLERANCES

A. Set HVAC system's air flow rates and water flow rates within the following tolerances:

1. Supply, Return, and Exhaust Fans and Equipment with Fans: Plus or minus 10 percent.
2. Air Outlets and Inlets: Plus or minus 10 percent.

3.10 REPORTING

A. Initial Construction-Phase Report: Based on examination of the Contract Documents as specified in "Examination" Article, prepare a report on the adequacy of design for systems' balancing devices. Recommend changes and additions to systems' balancing devices to facilitate proper performance measuring and balancing. Recommend changes and additions to HVAC systems and general construction to allow access for performance measuring and balancing devices.

3.11 FINAL REPORT

A. General: Prepare a certified written report; tabulate and divide the report into separate sections for tested systems and balanced systems.

1. Include a certification sheet at the front of the report's binder, signed and sealed by the certified testing and balancing engineer.
2. Include a list of instruments used for procedures, along with proof of calibration.

B. Final Report Contents: In addition to certified field-report data, include the following:

1. Fan curves.
2. Manufacturers' test data.
3. Field test reports prepared by system and equipment installers.
4. Other information relative to equipment performance; do not include Shop Drawings and product data.

C. General Report Data: In addition to form titles and entries, include the following data:

1. Title page.
2. Name and address of the TAB contractor.
3. Project name.
4. Project location.
5. Architect's name and address.
6. Engineer's name and address.
7. Contractor's name and address.
9. Signature of TAB supervisor who certifies the report.
10. Table of Contents with the total number of pages defined for each section of the report. Number each page in the report.
11. Summary of contents including the following:
 a. Indicated versus final performance.
 b. Notable characteristics of systems.
 c. Description of system operation sequence if it varies from the Contract Documents.
12. Nomenclature sheets for each item of equipment.
13. Data for terminal units, including manufacturer's name, type, size, and fittings.
14. Notes to explain why certain final data in the body of reports vary from indicated values.
15. Test conditions for fan performance forms including the following:
 a. Settings for outdoor- and exhaust-air dampers.
 b. Conditions of filters.
 c. Fan drive settings including settings and percentage of maximum pitch diameter.
 d. Other system operating conditions that affect performance.

D. System Diagrams: Include schematic layouts of air and hydronic distribution systems. Present each system with single-line diagram and include the following:

1. Quantities of outdoor, supply, return, and exhaust airflows.
2. Duct, outlet, and inlet sizes.

E. Air-Handling-Unit Test Reports: For air-handling units with coils, include the following:

1. Unit Data:
 a. Unit identification.
 b. Location.
 c. Make and type.
 d. Model number and unit size.
 e. Manufacturer's serial number.
 f. Unit arrangement and class.
 g. Discharge arrangement.
 h. Sheave make, size in inches, and bore.
 i. Center-to-center dimensions of sheave, and amount of adjustments in inches.
 j. Number, make, and size of belts.
 k. Number, type, and size of filters.
2. Motor Data:
 a. Motor make, and frame type and size.
 b. Horsepower and rpm.
 c. Volts, phase, and hertz.
 d. Full-load amperage and service factor.
 e. Sheave make, size in inches, and bore.
 f. Center-to-center dimensions of sheave, and amount of adjustments in inches.

3. Test Data (Indicated and Actual Values):
 a. Total air flow rate in cfm.
 b. Total system static pressure in inches wg.
 c. Fan rpm.
 d. Discharge static pressure in inches wg.
 e. Filter static-pressure differential in inches wg.
 f. Preheat-coil static-pressure differential in inches wg.
 g. Cooling-coil static-pressure differential in inches wg.
 h. Heating-coil static-pressure differential in inches wg.
 i. Outdoor airflow in cfm.
 j. Return airflow in cfm.
 k. Outdoor-air damper position.
 l. Return-air damper position.
 m. Vortex damper position.

F. Coil Test Reports:
1. Coil Data:
 a. System identification.
 b. Location.
 c. Coil type.
 d. Number of rows.
 e. Fin spacing in fins per inch o.c.
 f. Make and model number.
 g. Face area in sq. ft..
 h. Tube size in NPS.
 i. Tube and fin materials.
 j. Circuiting arrangement.

2. Test Data (Indicated and Actual Values):
 a. Air flow rate in cfm.
 b. Average face velocity in fpm.
 c. Air pressure drop in inches wg.
 d. Outdoor-air, wet- and dry-bulb temperatures in deg F.
 e. Return-air, wet- and dry-bulb temperatures in deg F.
 f. Entering-air, wet- and dry-bulb temperatures in deg F.
 g. Leaving-air, wet- and dry-bulb temperatures in deg F.
 h. Refrigerant expansion valve and refrigerator types.
 i. Refrigerant suction pressure in psig.
 j. Refrigerant suction temperature in deg F.

G. Electric-Coil Test Reports: For electric furnaces, duct coils, and electric coils installed in central-station air-handling units, include the following:
1. Unit Data:
 a. System identification.
 b. Location.
 c. Coil identification.
 d. Capacity in Btu/h.
 e. Number of stages.
 f. Connected volts, phase, and hertz.
 g. Rated amperage.
 h. Air flow rate in cfm.
 i. Face area in sq. ft.
 j. Minimum face velocity in fpm.

2. Test Data (Indicated and Actual Values):
 a. Heat output in Btu/h.
 b. Air flow rate in cfm.
 c. Air velocity in fpm.
 d. Entering-air temperature in deg F.
 e. Leaving-air temperature in deg F.
 f. Voltage at each connection.
 g. Amperage for each phase.

H. Fan Test Reports: For supply, return, and exhaust fans, include the following:

1. Fan Data:
 a. System identification.
 b. Location.
 c. Make and type.
 d. Model number and size.
 e. Manufacturer's serial number.
 f. Arrangement and class.
 g. Sheave make, size in inches, and bore.
 h. Center-to-center dimensions of sheave, and amount of adjustments in inches.

2. Motor Data:
 a. Motor make, and frame type and size.
 b. Horsepower and rpm.
 c. Volts, phase, and hertz.
 d. Full-load amperage and service factor.
 e. Sheave make, size in inches, and bore.
 f. Center-to-center dimensions of sheave, and amount of adjustments in inches.
 g. Number, make, and size of belts.

3. Test Data (Indicated and Actual Values):
 a. Total airflow rate in cfm.
 b. Total system static pressure in inches wg.
 c. Fan rpm.
 d. Discharge static pressure in inches wg.
 e. Suction static pressure in inches wg.

I. Instrument Calibration Reports:
1. **Report Data:**
 a. Instrument type and make.
 b. Serial number.
 c. Application.
 d. Dates of use.
 e. Dates of calibration.

J. **Air-Terminal-Device Reports:**

1. **Unit Data:**
 a. System and air-handling unit identification.
 b. Location and zone.
 c. Apparatus used for test.
 d. Area served.
 e. Make.
 f. Number from system diagram.
 g. Type and model number.
 h. Size.
 i. Effective area in sq. ft.

2. **Test Data (Indicated and Actual Values):**
 a. Air flow rate in cfm.
 b. Air velocity in fpm.
 c. Preliminary air flow rate as needed in cfm.
 d. Preliminary velocity as needed in fpm.
 e. Final air flow rate in cfm.
 f. Final velocity in fpm.
 g. Space temperature in deg F.

3.12 **INSPECTIONS**

A. **Initial Inspection:**

1. After testing and balancing are complete, operate each system and randomly check measurements to verify that the system is operating according to the final test and balance readings documented in the final report.
2. Check the following for each system:
 a. Measure airflow of at least 10 percent of air outlets.
 b. Verify that balancing devices are marked with final balance position.
 c. Note deviations from the Contract Documents in the final report.

B. **Final Inspection:**

1. After initial inspection is complete and documentation by random checks verifies that testing and balancing are complete and accurately documented in the final report, request that a final inspection be made by Architect.
2. The TAB contractor's test and balance engineer shall conduct the inspection in the presence of Architect.
3. Architect shall randomly select measurements, documented in the final report, to be rechecked. Rechecking shall be limited to either 10 percent of the total measurements recorded or the extent of measurements that can be accomplished in a normal 8-hour business day.

4. If rechecks yield measurements that differ from the measurements documented in the final report by more than the tolerances allowed, the measurements shall be noted as "FAILED."

5. If the number of "FAILED" measurements is greater than 10 percent of the total measurements checked during the final inspection, the testing and balancing shall be considered incomplete and shall be rejected.

C. TAB Work will be considered defective if it does not pass final inspections. If TAB Work fails, proceed as follows:

1. Recheck all measurements and make adjustments. Revise the final report and balancing device settings to include all changes; resubmit the final report and request a second final inspection.

2. If the second final inspection also fails, Owner may contract the services of another TAB contractor to complete TAB Work according to the Contract Documents and deduct the cost of the services from the original TAB contractor's final payment.

D. Prepare test and inspection reports.

3.13 ADDITIONAL TESTS

A. Within 90 days of completing TAB, perform additional TAB to verify that balanced conditions are being maintained throughout and to correct unusual conditions.

B. Seasonal Periods: If initial TAB procedures were not performed during near-peak summer and winter conditions, perform additional TAB during near-peak summer and winter conditions.

END OF SECTION 230593
SECTION 230713 - DUCT INSULATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section includes insulating the following duct services:
1. Indoor, concealed supply, return, and outdoor air.
2. Indoor, exposed supply, return, and outdoor air.
3. Outdoor
B. Related Sections:
1. Section 230719 "HVAC Piping Insulation."
2. Section 233113 "Metal Ducts".

1.3 ACTION SUBMITTALS
A. Product Data: For each type of product indicated. Include thermal conductivity, water-vapor permeance thickness, and jackets (both factory- and field-applied if any).

1.4 INFORMATIONAL SUBMITTALS
A. Qualification Data: For qualified Installer.
B. Material Test Reports: From a qualified testing agency acceptable to authorities having jurisdiction indicating, interpreting, and certifying test results for compliance of insulation materials, sealers, attachments, cements, and jackets, with requirements indicated. Include dates of tests and test methods employed.
C. Field quality-control reports.

1.5 QUALITY ASSURANCE
A. Installer Qualifications: Skilled mechanics who have successfully completed an apprenticeship program or another craft training program certified by the Department of Labor, Bureau of Apprenticeship and Training.
B. Surface-Burning Characteristics: For insulation and related materials, as determined by testing identical products according to ASTM E 84, by a testing agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, tapes, and cement material containers, with appropriate markings of applicable testing agency.
1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.
2. Insulation Installed Outdoors: Flame-spread index of 75 or less, and smoke-developed index of 150 or less.

1.6 DELIVERY, STORAGE, AND HANDLING
A. Packaging: Insulation material containers shall be marked by manufacturer with appropriate ASTM standard designation, type and grade, and maximum use temperature.

1.7 COORDINATION
A. Coordinate sizes and locations of supports, hangers, and insulation shields specified in Section 230529 "Hangers and Supports for HVAC Piping and Equipment."
B. Coordinate clearance requirements with duct Installer for duct insulation application. Before preparing ductwork Shop Drawings, establish and maintain clearance requirements for installation of insulation and field-applied jackets and finishes and for space required for maintenance.

1.8 SCHEDULING
A. Schedule insulation application after pressure testing systems and, where required, after installing and testing heat tracing. Insulation application may begin on segments that have satisfactory test results.

PART 2 - PRODUCTS

2.1 INSULATION MATERIALS
B. Products shall not contain asbestos, lead, mercury, or mercury compounds.
C. Products that come in contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested according to ASTM C 871.
D. Insulation materials for use on austenitic stainless steel shall be qualified as acceptable according to ASTM C 795.
E. Foam insulation materials shall not use CFC or HCFC blowing agents in the manufacturing process.
F. Flexible Elastomeric Insulation: Closed-cell, sponge- or expanded-rubber materials. Comply with ASTM C 534, Type II for sheet materials.

1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 a. Aeroflex USA, Inc.; Aerocel.
 b. Armacell LLC; AP Armaflex.
c. K-Flex USA; Insul-Sheet, K-Flex Gray Duct Liner, and K-FLEX LS.
d. Or Equal

G. Mineral-Fiber Blanket Insulation: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 553, Type II and ASTM C 1290, Type III with factory-applied FSK jacket. Factory-applied jacket requirements are specified in "Factory- Applied Jackets" Article.

1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 a. CertainTeed Corp.; SoftTouch Duct Wrap.
 b. Johns Manville; Microlite.
 c. Knauf Insulation; Friendly Feel Duct Wrap.
 d. Manson Insulation Inc.; Alley Wrap.
 e. Owens Corning; SOFTR All-Service Duct Wrap.
 f. Or Equal.

H. Mineral-Fiber Board Insulation: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 612, Type IA or Type IB. For duct and plenum applications, provide insulation with factory-applied FSK jacket. Factory-applied jacket requirements are specified in "Factory- Applied Jackets" Article.

1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 a. CertainTeed Corp.; Commercial Board.
 b. Fibrex Insulations Inc.; FBX.
 c. Johns Manville; 800 Series Spin-Glas.
 d. Knauf Insulation; Insulation Board.
 e. Manson Insulation Inc.; AK Board.
 f. Owens Corning; Fiberglas 700 Series.
 g. Or Equal.

2.2 FIRE-RATED INSULATION SYSTEMS

A. Fire-Rated Board: Structural-grade, press-molded, xonolite calcium silicate, fireproofing board suitable for operating temperatures up to 1700 deg F. Comply with ASTM C 656, Type II, Grade 6. Tested and certified to provide a 2-hour fire rating by an NRTL acceptable to authorities having jurisdiction.

1. Products: Subject to compliance with requirements, provide one of the following:
 a. Johns Manville; Super Firetemp M.
 b. Or Equal.

B. Fire-Rated Blanket: High-temperature, flexible, blanket insulation with FSK jacket that is tested and certified to provide a 2-hour fire rating by an NRTL acceptable to authorities having jurisdiction.

1. Products: Subject to compliance with requirements, provide one of the following:
 a. CertainTeed Corp.; FlameChek.
 b. Johns Manville; Firetemp Wrap.
 c. Nelson Fire Stop Products; Nelson FSB Flameshield Blanket.
 d. Thermal Ceramics; FireMaster Duct Wrap.
 e. 3M; Fire Barrier Wrap Products.
2.3 ADHESIVES

A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated unless otherwise indicated.

B. Flexible Elastomeric Adhesive: Comply with MIL-A-24179A, Type II, Class I.

1. **Products:** Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 a. Aeroflex USA, Inc.; Aeroseal.
 b. Armacell LLC; Armaflex 520 Adhesive.
 c. Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 85-75 K-Flex USA; R-373 Contact Adhesive.
 d. Or Equal.

2. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

3. Adhesive shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

C. Mineral-Fiber Adhesive: Comply with MIL-A-3316C, Class 2, Grade A.

1. **Products:** Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 c. Or Equal.

2. For indoor applications, adhesive shall have a VOC content of 80 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

3. Adhesive shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

1. **Products:** Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 b. Eagle Bridges - Marathon Industries; 225.
 d. Or Equal.
2. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
3. Adhesive shall comply with the testing and product requirements of the California Department of Health Services’ "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

2.4 MASTICS

A. Materials shall be compatible with insulation materials, jackets, and substrates; comply with MIL-PRF-19565C, Type II.

1. For indoor applications, use mastics that have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

B. Vapor-Barrier Mastic: Water based; suitable for indoor use on below ambient services.

1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 b. Vimasco Corporation; 749.
 c. Or Equal.
 d.

2. Water-Vapor Permeance: ASTM E 96/E 96M, Procedure B, 0.013 perm at 43-mil dry film thickness.
3. Service Temperature Range: Minus 20 to plus 180 deg F.
4. Solids Content: ASTM D 1644, 58 percent by volume and 70 percent by weight.

C. Breather Mastic: Water based; suitable for indoor and outdoor use on above ambient services.

1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 b. Eagle Bridges - Marathon Industries; 550.
 e. Vimasco Corporation; WC-1/WC-5.
 f. Or Equal.

2. Water-Vapor Permeance: ASTM F 1249, 1.8 perms at 0.0625-inch dry film thickness.
3. Service Temperature Range: Minus 20 to plus 180 deg F.
4. Solids Content: 60 percent by volume and 66 percent by weight.
2.5 LAGGING ADHESIVES

A. Description: Comply with MIL-A-3316C, Class I, Grade A and shall be compatible with insulation materials, jackets, and substrates.

1. For indoor applications, use lagging adhesives that have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
2. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 c. Vimasco Corporation; 713 and 714.
 d. Or Equal.

3. Fire-resistant, water-based lagging adhesive and coating for use indoors to adhere fire-resistant lagging cloths over duct insulation.
4. Service Temperature Range: 0 to plus 180 deg F.

2.6 SEALANTS

A. FSK and Metal Jacket Flashing Sealants:

1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 b. Eagle Bridges - Marathon Industries; 405.
 c. Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 95-44.
 d. Mon-Eco Industries, Inc.; 44-05.
 e. Or Equal.

2. Materials shall be compatible with insulation materials, jackets, and substrates.
3. Fire- and water-resistant, flexible, elastomeric sealant.
4. Service Temperature Range: Minus 40 to plus 250 deg F.
5. Color: Aluminum.
6. For indoor applications, sealants shall have a VOC content of 420 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
7. Sealants shall comply with the testing and product requirements of the California Department of Health Services’ "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

2.7 FACTORY-APPLIED JACKETS

A. Insulation system schedules indicate factory-applied jackets on various applications. When factory-applied jackets are indicated, comply with the following:
1. FSK Jacket: Aluminum-foil, fiberglass-reinforced scrim with kraft-paper backing; complying with ASTM C 1136, Type II.
2.8 FIELD-APPLIED JACKETS

A. Field-applied jackets shall comply with ASTM C 921, Type I, unless otherwise indicated.

B. Metal Jacket:

1. **Products**: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:

 b. ITW Insulation Systems; Aluminum and Stainless Steel Jacketing.

 c. RPR Products, Inc.; Insul-Mate.

 d. Or Equal.

 a. Factory cut and rolled to size.

 b. Finish and thickness are indicated in field-applied jacket schedules.

 c. Moisture Barrier for Outdoor Applications: 2.5-mil-thick polysurlyn.

2.9 TAPES

A. FSK Tape: Foil-face, vapor-retarder tape matching factory-applied jacket with acrylic adhesive; complying with ASTM C 1136.

1. **Products**: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:

 a. ABI, Ideal Tape Division; 491 AWF FSK.

 b. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0827.

 c. Compac Corporation; 110 and 111.

 d. Venture Tape; 1525 CW NT, 1528 CW, and 1528 CW/SQ.

 e. Or Equal.

2. **Width**: 3 inches.

3. **Thickness**: 6.5 mils.

4. **Adhesion**: 90 ounces force/inch in width.

5. **Elongation**: 2 percent.

6. **Tensile Strength**: 40 lbf/inch in width.

7. **FSK Tape Disks and Squares**: Precut disks or squares of FSK tape.

2.10 SECUREMENTS

A. Bands:

1. **Products**: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:

 a. ITW Insulation Systems; Gerrard Strapping and Seals.

 b. RPR Products, Inc.; Insul-Mate Strapping, Seals, and Springs.

 c. Or Equal.
2. Aluminum: ASTM B 209, Alloy 3003, 3005, 3105, or 5005; Temper H-14, 0.020 inch thick, 3/4 inch wide with wing seal or closed seal.

B. Insulation Pins and Hangers:

1. Capacitor-Discharge-Weld Pins: Copper- or zinc-coated steel pin, fully annealed for capacitor-discharge welding, 0.135-inch diameter shank, length to suit depth of insulation indicated.

a. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:

 1) AGM Industries, Inc.; CWP-1.
 2) GEMCO; CD.
 3) Midwest Fasteners, Inc.; CD.
 4) Nelson Stud Welding; TPA, TPC, and TPS.
 5) Or Equal.

2. Cupped-Head, Capacitor-Discharge-Weld Pins: Copper- or zinc-coated steel pin, fully annealed for capacitor-discharge welding, 0.135-inch diameter shank, length to suit depth of insulation indicated with integral 1-1/2-inch galvanized carbon-steel washer.

a. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:

 1) AGM Industries, Inc.; CHP-1.
 2) GEMCO; Cupped Head Weld Pin.
 3) Midwest Fasteners, Inc.; Cupped Head.
 4) Nelson Stud Welding; CHP.
 5) Or Equal.

3. Metal, Adhesively Attached, Perforated-Base Insulation Hangers: Baseplate welded to projecting spindle that is capable of holding insulation, of thickness indicated, securely in position indicated when self-locking washer is in place. Comply with the following requirements:

 a. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:

 1) AGM Industries, Inc.; Tactoo Perforated Base Insul-Hangers.
 2) GEMCO; Perforated Base.
 3) Midwest Fasteners, Inc.; Spindle.
 4) Or Equal.

 b. Baseplate: Perforated, galvanized carbon-steel sheet, 0.030 inch thick by 2 inches square.
 c. Spindle: Aluminum, fully annealed, 0.106-inch diameter shank, length to suit depth of insulation indicated.
 d. Adhesive: Recommended by hanger manufacturer. Product with demonstrated capability to bond insulation hanger securely to substrates indicated without damaging insulation, hangers, and substrates.

4. Nonmetal, Adhesively Attached, Perforated-Base Insulation Hangers: Baseplate fastened to projecting spindle that is capable of holding insulation, of thickness indicated, securely in position indicated when self-locking washer is in place. Comply with the following requirements:
a. **Products:** Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:

1) **GEMCO;** Nylon Hangers.
2) **Midwest Fasteners, Inc.;** Nylon Insulation Hangers.
3) **Or Equal.**

b. **Baseplate:** Perforated, nylon sheet, 0.030 inch thick by 1-1/2 inches in diameter.

c. **Spindle:** Nylon, 0.106-inch- diameter shank, length to suit depth of insulation indicated, up to 2-1/2 inches.

d. **Adhesive:** Recommended by hanger manufacturer. Product with demonstrated capability to bond insulation hanger securely to substrates indicated without damaging insulation, hangers, and substrates.

5. **Self-Sticking-Base Insulation Hangers:** Baseplate welded to projecting spindle that is capable of holding insulation, of thickness indicated, securely in position indicated when self-locking washer is in place. Comply with the following requirements:

a. **Products:** Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:

1) **AGM Industries, Inc.;** Tactoo Self-Adhering Insul-Hangers.
2) **GEMCO;** Peel & Press.
3) **Midwest Fasteners, Inc.;** Self Stick.
4) **Or Equal.**

b. **Baseplate:** Galvanized carbon-steel sheet, 0.030 inch thick by 2 inches square.

c. **Spindle:** Stainless steel, fully annealed, 0.106-inch- diameter shank, length to suit depth of insulation indicated.

d. **Adhesive-backed base with a peel-off protective cover.**

6. **Insulation-Retaining Washers:** Self-locking washers formed from 0.016-inch- thick, aluminum sheet, with beveled edge sized as required to hold insulation securely in place but not less than 1-1/2 inches in diameter.

a. **Products:** Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:

1) **AGM Industries, Inc.;** RC-150.
2) **GEMCO;** R-150.
3) **Midwest Fasteners, Inc.;** WA-150.
4) **Nelson Stud Welding;** Speed Clips.
5) **Or Equal.**

b. **Protect ends with capped self-locking washers incorporating a spring steel insert to ensure permanent retention of cap in exposed locations.**

7. **Nonmetal Insulation-Retaining Washers:** Self-locking washers formed from 0.016-inch- thick nylon sheet, with beveled edge sized as required to hold insulation securely in place but not less than 1-1/2 inches in diameter.

a. **Manufacturers:** Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
1) GEMCO.
2) Midwest Fasteners, Inc.
3) Or Equal.

C. Staples: Outward-clinching insulation staples, nominal 3/4-inch- wide, stainless steel or Monel.

D. Wire: 0.062-inch soft-annealed, galvanized steel.

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 b. Or Equal.

2.11 DOUBLE WALL DUCT INTERSTITIAL INSULATION

A. Interstitial Insulation: Fibrous-glass liner complying with ASTM C 1071, NFPA 90A, or NFPA 90B; and with NAIMA AH124, "Fibrous Glass Duct Liner Standard."

1. Maximum Thermal Conductivity: 0.27 Btu x in./h x sq. ft. x deg F at 75 deg F mean temperature.
2. Install spacers that position the inner duct at uniform distance from outer duct without compressing insulation.
3. Coat insulation with antimicrobial coating.
4. Cover insulation with polyester film complying with UL 181, Class 1.

B. Interstitial Insulation: Flexible elastomeric duct liner complying with ASTM C 534, Type II for sheet materials, and with NFPA 90A or NFPA 90B.

1. Maximum Thermal Conductivity: 0.25 Btu x in./h x sq. ft. x deg F at 75 deg F mean temperature.

2.12 DUCT LINER

A. Fibrous duct liner in the airstream shall not be acceptable.

B. Flexible Elastomeric Duct Liner: Preformed, cellular, closed-cell, sheet materials complying with ASTM C 534, Type II, Grade 1; and with NFPA 90A or NFPA 90B.

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Aeroflex USA Inc.
 b. Armacell LLC.
 c. Rubatex International, LLC
 d. Or Equal

2. Surface-Burning Characteristics: Maximum flame-spread index of 25 and maximum smoke-developed index of 50 when tested according to UL 723; certified by an NRTL.
3. Liner Adhesive: As recommended by insulation manufacturer and complying with NFPA 90A or NFPA 90B.
 a. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
b. Adhesive shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

C. Shop Application of Duct Liner: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 7-11, "Flexible Duct Liner Installation."

1. Adhere a single layer of indicated thickness of duct liner with at least 90 percent adhesive coverage at liner contact surface area. Attaining indicated thickness with multiple layers of duct liner is prohibited.
2. Apply adhesive to transverse edges of liner facing upstream that do not receive metal nosing.
3. Butt transverse joints without gaps, and coat joint with adhesive.
4. Fold and compress liner in corners of rectangular ducts or cut and fit to ensure butted-edge overlapping.
5. Do not apply liner in rectangular ducts with longitudinal joints, except at corners of ducts, unless duct size and dimensions of standard liner make longitudinal joints necessary.
6. Apply adhesive coating on longitudinal seams in ducts with air velocity of 2500 fpm.
7. Secure liner with mechanical fasteners 4 inches from corners and at intervals not exceeding 12 inches transversely; at 3 inches from transverse joints and at intervals not exceeding 18 inches longitudinally.
8. Secure transversely oriented liner edges facing the airstream with metal nosings that have either channel or "Z" profiles or are integrally formed from duct wall. Fabricate edge facings at the following locations:
 a. Fan discharges.
 b. Intervals of lined duct preceding unlined duct.
 c. Upstream edges of transverse joints in ducts where air velocities are higher than 2500 fpm or where indicated.
9. Secure insulation between perforated sheet metal inner duct of same thickness as specified for outer shell. Use mechanical fasteners that maintain inner duct at uniform distance from outer shell without compressing insulation.
 a. Sheet Metal Inner Duct Perforations: 3/32-inch diameter, with an overall open area of 23 percent.
10. Terminate inner ducts with buildouts attached to fire-damper sleeves, dampers, turning vane assemblies, or other devices. Fabricated buildouts (metal hat sections) or other buildout means are optional; when used, secure buildouts to duct walls with bolts, screws, rivets, or welds.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates and conditions for compliance with requirements for installation tolerances and other conditions affecting performance of insulation application.
 1. Verify that systems to be insulated have been tested and are free of defects.
 2. Verify that surfaces to be insulated are clean and dry.

B. Proceed with installation only after unsatisfactory conditions have been corrected.
3.2 PREPARATION

A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.

3.3 GENERAL INSTALLATION REQUIREMENTS

A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of ducts and fittings.

B. Install insulation materials, vapor barriers or retarders, jackets, and thicknesses required for each item of duct system as specified in insulation system schedules.

C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.

D. Install insulation with longitudinal seams at top and bottom of horizontal runs.

E. Install multiple layers of insulation with longitudinal and end seams staggered.

F. Keep insulation materials dry during application and finishing.

G. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.

H. Install insulation with least number of joints practical.

I. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.

 1. Install insulation continuously through hangers and around anchor attachments.
 2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends at attachment to structure with vapor-barrier mastic.
 3. Install insert materials and install insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.

J. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses.

K. Install insulation with factory-applied jackets as follows:

 1. Draw jacket tight and smooth.
 2. Cover circumferential joints with 3-inch-wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip, spaced 4 inches o.c.
 3. Overlap jacket longitudinal seams at least 1-1/2 inches. Clean and dry surface to receive self-sealing lap. Staple laps with outward clinching staples along edge at 4 inches o.c.

 a. For below ambient services, apply vapor-barrier mastic over staples.

 4. Cover joints and seams with tape, according to insulation material manufacturer's written instructions, to maintain vapor seal.
 5. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints and at ends adjacent to duct flanges and fittings.
L. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness.

M. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.

N. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.

3.4 PENETRATIONS

A. Insulation Installation at Roof Penetrations: Install insulation continuously through roof penetrations.
 1. Seal penetrations with flashing sealant.
 2. For applications requiring only indoor insulation, terminate insulation above roof surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 3. Extend jacket of outdoor insulation outside roof flashing at least 2 inches below top of roof flashing.
 4. Seal jacket to roof flashing with flashing sealant.

B. Insulation Installation at Aboveground Exterior Wall Penetrations: Install insulation continuously through wall penetrations.
 1. Seal penetrations with flashing sealant.
 2. For applications requiring only indoor insulation, terminate insulation inside wall surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 3. Extend jacket of outdoor insulation outside wall flashing and overlap wall flashing at least 2 inches.
 4. Seal jacket to wall flashing with flashing sealant.

C. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.

D. Insulation Installation at Fire-Rated Wall and Partition Penetrations: Terminate insulation at fire damper sleeves for fire-rated wall and partition penetrations.Externally insulate damper sleeves to match adjacent insulation and overlap duct insulation at least 2 inches.
 1. Comply with requirements in Section 078413 "Penetration Firestopping" firestopping and fire-resistant joint sealers.

E. Insulation Installation at Floor Penetrations:
 1. Duct: For penetrations through fire-rated assemblies, terminate insulation at fire damper sleeves and externally insulate damper sleeve beyond floor to match adjacent duct insulation. Overlap damper sleeve and duct insulation at least 2 inches.
 2. Seal penetrations through fire-rated assemblies. Comply with requirements in Section 078413 "Penetration Firestopping."

3.5 INSTALLATION OF FLEXIBLE ELASTOMERIC INSULATION

A. Seal longitudinal seams and end joints with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.
3.6 INSTALLATION OF MINERAL-FIBER INSULATION

A. Blanket Insulation Installation on Ducts and Plenums: Secure with adhesive and insulation pins.

1. Apply adhesives according to manufacturer's recommended coverage rates per unit area, for 100 percent coverage of duct and plenum surfaces.
2. Apply adhesive to entire circumference of ducts and to all surfaces of fittings and transitions.
3. Install either capacitor-discharge-weld pins and speed washers or cupped-head, capacitor-discharge-weld pins on sides and bottom of horizontal ducts and sides of vertical ducts as follows:

 a. On duct sides with dimensions 18 inches and smaller, place pins along longitudinal centerline of duct. Space 3 inches maximum from insulation end joints, and 16 inches o.c.
 b. On duct sides with dimensions larger than 18 inches, place pins 16 inches o.c. each way, and 3 inches maximum from insulation joints. Install additional pins to hold insulation tightly against surface at cross bracing.
 c. Pins may be omitted from top surface of horizontal, rectangular ducts and plenums.
 d. Do not overcompress insulation during installation.
 e. Impale insulation over pins and attach speed washers.
 f. Cut excess portion of pins extending beyond speed washers or bend parallel with insulation surface. Cover exposed pins and washers with tape matching insulation facing.

4. For ducts and plenums with surface temperatures below ambient, install a continuous unbroken vapor barrier. Create a facing lap for longitudinal seams and end joints with insulation by removing 2 inches from one edge and one end of insulation segment. Secure laps to adjacent insulation section with 1/2-inch outward-clinching staples, 1 inch o.c. Install vapor barrier consisting of factory- or field-applied jacket, adhesive, vapor-barrier mastic, and sealant at joints, seams, and protrusions.

 a. Repair punctures, tears, and penetrations with tape or mastic to maintain vapor-barrier seal.
 b. Install vapor stops for ductwork and plenums operating below 50 deg F at 18-foot intervals. Vapor stops shall consist of vapor-barrier mastic applied in a Z-shaped pattern over insulation face, along butt end of insulation, and over the surface. Cover insulation face and surface to be insulated a width equal to two times the insulation thickness, but not less than 3 inches.

5. Overlap unfaced blankets a minimum of 2 inches on longitudinal seams and end joints. At end joints, secure with steel bands spaced a maximum of 18 inches o.c.

B. Board Insulation Installation on Ducts and Plenums: Secure with adhesive and insulation pins.

1. Apply adhesives according to manufacturer's recommended coverage rates per unit area, for 100 percent coverage of duct and plenum surfaces.
2. Apply adhesive to entire circumference of ducts and to all surfaces of fittings and transitions.
3. Install either capacitor-discharge-weld pins and speed washers or cupped-head, capacitor-discharge-weld pins on sides and bottom of horizontal ducts and sides of vertical ducts as follows:

 a. On duct sides with dimensions 18 inches and smaller, place pins along longitudinal centerline of duct. Space 3 inches maximum from insulation end joints, and 16 inches o.c.
b. On duct sides with dimensions larger than 18 inches, space pins 16 inches o.c. each way, and 3 inches maximum from insulation joints. Install additional pins to hold insulation tightly against surface at cross bracing.

c. Pins may be omitted from top surface of horizontal, rectangular ducts and plenums.

d. Do not over compress insulation during installation.

e. Cut excess portion of pins extending beyond speed washers or bend parallel with insulation surface. Cover exposed pins and washers with tape matching insulation facing.

4. For ducts and plenums with surface temperatures below ambient, install a continuous unbroken vapor barrier. Create a facing lap for longitudinal seams and end joints with insulation by removing 2 inches from one edge and one end of insulation segment. Secure laps to adjacent insulation section with 1/2-inch outward-clinching staples, 1 inch o.c. Install vapor barrier consisting of factory- or field-applied jacket, adhesive, vapor-barrier mastic, and sealant at joints, seams, and protrusions.

a. Repair punctures, tears, and penetrations with tape or mastic to maintain vapor-barrier seal.

b. Install vapor stops for ductwork and plenums operating below 50 deg F at 18-foot intervals. Vapor stops shall consist of vapor-barrier mastic applied in a Z-shaped pattern over insulation face, along butt end of insulation, and over the surface. Cover insulation face and surface to be insulated a width equal to two times the insulation thickness, but not less than 3 inches.

5. Install insulation on rectangular duct elbows and transitions with a full insulation section for each surface. Groove and score insulation to fit as closely as possible to outside and inside radius of elbows. Install insulation on round and flat-oval duct elbows with individually mitered gores cut to fit the elbow.

6. Insulate duct stiffeners, hangers, and flanges that protrude beyond insulation surface with 6-inch-wide strips of same material used to insulate duct. Secure on alternating sides of stiffener, hanger, and flange with pins spaced 6 inches o.c.

3.7 FIELD-APPLIED JACKET INSTALLATION

A. Where metal jackets are indicated, install with 2-inch overlap at longitudinal seams and end joints. Overlap longitudinal seams arranged to shed water. Seal end joints with weatherproof sealant recommended by insulation manufacturer. Secure jacket with stainless-steel bands 12 inches o.c. and at end joints.

3.8 FIRE-RATED INSULATION SYSTEM INSTALLATION

A. Where fire-rated insulation system is indicated, secure system to ducts and duct hangers and supports to maintain a continuous fire rating.

B. Insulate duct access panels and doors to achieve same fire rating as duct.

C. Install firestopping at penetrations through fire-rated assemblies. Fire-stop systems are specified in Section 078413 "Penetration Firestopping."

3.9 FINISHES

A. Insulation with Paintable Jacket Material: Paint jacket with paint system identified below and as specified in Section 099113 "Exterior Painting" and Section 099123 "Interior Painting."
1. Flat Acrylic Finish: Two finish coats over a primer that is compatible with jacket material and finish coat paint. Add fungicidal agent to render fabric mildew proof.

B. Flexible Elastomeric Thermal Insulation: After adhesive has fully cured, apply two coats of insulation manufacturer's recommended protective coating.

C. Color: Final color as selected by Architect. Vary first and second coats to allow visual inspection of the completed Work.

D. Do not field paint aluminum or stainless-steel jackets.

3.10 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.

B. Perform tests and inspections.

C. Tests and Inspections:

 1. Inspect ductwork, randomly selected by Architect, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to one location(s) for each duct system defined in the "Duct Insulation Schedule, General" Article.

D. All insulation applications will be considered defective Work if sample inspection reveals noncompliance with requirements.

3.11 DUCT INSULATION SCHEDULE, GENERAL

A. Plenums and Ducts Requiring Insulation:

 1. All supply, return, and outdoor air.
 2. Where energy recovery wheel is present, environmental air exhaust to the wheel.
 3. Type I, commercial, kitchen hood exhaust.
 4. Exhaust between isolation damper and penetration of building exterior.

B. Items Not Insulated:

 1. Fibrous-glass ducts.
 2. Metal ducts with duct liner of sufficient thickness to comply with energy code and ASHRAE/IESNA 90.1.
 3. Factory-insulated flexible ducts.
 5. Flexible connectors.
 7. Factory-insulated access panels and doors.
 8. Environmental air exhaust where energy recovery wheel is not present.
 9. Where energy recovery wheel is present, environmental air exhaust after the wheel.
3.12 INDOOR DUCT AND PLENUM INSULATION SCHEDULE

A. Concealed supply, return, and outdoor-air duct and plenum insulation shall be the following:
 1. Mineral-Fiber Blanket: 2.2 inches thick and 0.75-lb/cu. ft. nominal density.

B. Concealed, Type I, Commercial, Kitchen Hood Exhaust Duct and Plenum Insulation: Fire-rated blanket or board; thickness as required to achieve 2-hour fire rating.

C. Exposed supply, return, and outdoor-air duct in Utility and Service Spaces Below 8’ Above Finished Floor, insulation shall be the following:
 1. Mineral-Fiber Board: 2 inches thick and 2-lb/cu. ft. nominal density.

D. Exposed supply, return, and outdoor-air duct where indicated on the drawings or Metal Duct Specification to have single wall duct, insulation shall be the following:
 1. Mineral-Fiber Blanket: 2.2 inches thick and 0.75-lb/cu. ft. nominal density. Surface of insulation shall be prepared for painting to match adjacent surfaces, coordinate with architectural plans.

E. Exposed supply, return, and outdoor-air duct where indicated on the drawings or Metal Duct Specifications to have double wall duct, liner shall be the following:
 1. If perforated inner duct is used: Flexible Elastomeric: 1 inch thick.
 2. If solid wall inner duct is used: Mineral-Fiber Blanket: 1 inches thick and 0.75-lb/cu. ft nominal density.

3.13 ABOVEGROUND, OUTDOOR DUCT AND PLENUM INSULATION SCHEDULE

A. Supply, return, and outdoor air duct:
 1. Flexible Elastomeric: 2 inch thick.

3.14 OUTDOOR, FIELD-APPLIED JACKET SCHEDULE

A. Install jacket over insulation material. For insulation with factory-applied jacket, install the field-applied jacket over the factory-applied jacket.

B. If more than one material is listed, selection from materials listed is Contractor's option.

C. Ducts and Plenums, Exposed:
 1. Aluminum:, 0.040 inch thick.

END OF SECTION 230713
SECTION 230719 - HVAC PIPING INSULATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes insulating the following HVAC piping systems:

1. Condensate drain piping, indoors and outdoors.
2. Refrigerant suction and hot-gas piping, indoors and outdoors.

B. Related Sections:

1. Section 230713 "Duct Insulation."

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated. Include thermal conductivity, water-vapor permeance thickness, and jackets (both factory and field applied if any).

B. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.

1. Detail application of protective shields, saddles, and inserts at hangers for each type of insulation and hanger.
2. Detail attachment and covering of heat tracing inside insulation.
3. Detail insulation application at pipe expansion joints for each type of insulation.
4. Detail insulation application at elbows, fittings, flanges, valves, and specialties for each type of insulation.
5. Detail removable insulation at piping specialties.
6. Detail application of field-applied jackets.
7. Detail application at linkages of control devices.

1.4 INFORMATIONAL SUBMITTALS

A. Qualification Data: For qualified Installer.

B. Material Test Reports: From a qualified testing agency acceptable to authorities having jurisdiction indicating, interpreting, and certifying test results for compliance of insulation materials, sealers, attachments, cements, and jackets, with requirements indicated. Include dates of tests and test methods employed.

C. Field quality-control reports.
1.5 QUALITY ASSURANCE

A. Installer Qualifications: Skilled mechanics who have successfully completed an apprenticeship program or another craft training program certified by the Department of Labor, Bureau of Apprenticeship and Training.

B. Surface-Burning Characteristics: For insulation and related materials, as determined by testing identical products according to ASTM E 84, by a testing and inspecting agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, tapes, and cement material containers, with appropriate markings of applicable testing agency.

1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.
2. Insulation Installed Outdoors: Flame-spread index of 75 or less, and smoke-developed index of 150 or less.

1.6 DELIVERY, STORAGE, AND HANDLING

A. Packaging: Insulation material containers shall be marked by manufacturer with appropriate ASTM standard designation, type and grade, and maximum use temperature.

1.7 COORDINATION

A. Coordinate sizes and locations of supports, hangers, and insulation shields specified in Section 230529 "Hangers and Supports for HVAC Piping and Equipment."

B. Coordinate clearance requirements with piping Installer for piping insulation application. Before preparing piping Shop Drawings, establish and maintain clearance requirements for installation of insulation and field-applied jackets and finishes and for space required for maintenance.

1.8 SCHEDULING

A. Schedule insulation application after pressure testing systems and, where required, after installing and testing heat tracing. Insulation application may begin on segments that have satisfactory test results.

B. Complete installation and concealment of plastic materials as rapidly as possible in each area of construction.

PART 2 - PRODUCTS

2.1 INSULATION MATERIALS

B. Products shall not contain asbestos, lead, mercury, or mercury compounds.
C. Products that come in contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested according to ASTM C 871.

D. Insulation materials for use on austenitic stainless steel shall be qualified as acceptable according to ASTM C 795.

E. Foam insulation materials shall not use CFC or HCFC blowing agents in the manufacturing process.

F. Flexible Elastomeric Insulation: Closed-cell, sponge- or expanded-rubber materials. Comply with ASTM C 534, Type I for tubular materials.

1. **Products:** Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - **a.** Aeroflex USA, Inc.; Aerocel.
 - **b.** Armacell LLC; AP Armaflex.
 - **c.** K-Flex USA; Insul-Lock, Insul-Tube, and K-FLEX LS.
 - **d.** Or equal

2.2 **ADHESIVES**

A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated unless otherwise indicated.

B. **Flexible Elastomeric Adhesive:** Comply with MIL-A-24179A, Type II, Class I.

1. **Products:** Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - **a.** Aeroflex USA, Inc.; Aeroseal.
 - **b.** Armacell LLC; Armaflex 520 Adhesive.
 - **c.** Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 85-75.
 - **d.** K-Flex USA; R-373 Contact Adhesive.
 - **e.** Or equal

2. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

3. Adhesive shall comply with the testing and product requirements of the California Department of Health Services’ "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

C. **PVC Jacket Adhesive:** Compatible with PVC jacket.

1. **Products:** Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - **a.** Dow Corning Corporation; 739, Dow Silicone.
 - **b.** Johns Manville; Zeston Perma-Weld, CEEL-TITE Solvent Welding Adhesive.
 - **c.** P.I.C. Plastics, Inc.; Welding Adhesive.
 - **d.** Speedline Corporation; Polyco VP Adhesive.
 - **e.** Or equal
2. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

3. Adhesive shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

2.3 MASTICS

A. Materials shall be compatible with insulation materials, jackets, and substrates; comply with MIL-PRF-19565C, Type II.

1. For indoor applications, use mastics that have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

B. Vapor-Barrier Mastic: Water based; suitable for indoor use on below-ambient services.

1. **Products:** Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:

 b. **Vimasco Corporation:** 749.

 c. **Or equal**

2. **Water-Vapor Permeance:** ASTM E 96/E 96M, Procedure B, 0.013 perm at 43-mil dry film thickness.

3. **Service Temperature Range:** Minus 20 to plus 180 deg F.

4. **Solids Content:** ASTM D 1644, 58 percent by volume and 70 percent by weight.

5. **Color:** White.

C. Vapor-Barrier Mastic: Solvent based; suitable for indoor use on below-ambient services.

1. **Products:** Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:

 b. **Eagle Bridges** - Marathon Industries; 501.

 c. **Foster Brand,** Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 30-35.

 d. **Mon-Eco Industries, Inc.**; 55-10.

 e. **Or equal**

2. **Water-Vapor Permeance:** ASTM F 1249, 0.05 perm at 35-mil dry film thickness.

3. **Service Temperature Range:** 0 to 180 deg F.

4. **Solids Content:** ASTM D 1644, 44 percent by volume and 62 percent by weight.

5. **Color:** White.

D. Vapor-Barrier Mastic: Solvent based; suitable for outdoor use on below-ambient services.

1. **Products:** Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
2.4 LAGGING ADHESIVES

A. Description: Comply with MIL-A-3316C, Class I, Grade A and shall be compatible with insulation materials, jackets, and substrates.

1. For indoor applications, use lagging adhesives that have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

2. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:

 c. **Vimasco Corporation**: 713 and 714.
 d. Or equal

3. Fire-resistant, water-based lagging adhesive and coating for use indoors to adhere fire-resistant lagging cloths over pipe insulation.

4. Service Temperature Range: 0 to plus 180 deg F.

2.5 SEALANTS

A. Metal Jacket Flashing Sealants:

1. **Products:** Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:

 a. **Childers Brand,** Specialty Construction Brands, Inc., a business of H. B. Fuller Company; CP-76.
 b. **Eagle Bridges - Marathon Industries;** 405.
 c. **Foster Brand,** Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 95-44.
 d. **Mon-Eco Industries, Inc.;** 44-05.
 e. **Or equal**

2. Materials shall be compatible with insulation materials, jackets, and substrates.

3. Fire- and water-resistant, flexible, elastomeric sealant.

4. Service Temperature Range: Minus 40 to plus 250 deg F.

5. Color: Aluminum.

6. For indoor applications, sealants shall have a VOC content of 420 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

7. Sealants shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

B. PVC Jacket Flashing Sealants:

1. **Products:** Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:

 a. **Childers Brand,** Specialty Construction Brands, Inc., a business of H. B. Fuller Company; CP-76.

 b. **Or equal**

2. Materials shall be compatible with insulation materials, jackets, and substrates.

3. Fire- and water-resistant, flexible, elastomeric sealant.

4. Service Temperature Range: Minus 40 to plus 250 deg F.

6. For indoor applications, sealants shall have a VOC content of 420 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

7. Sealants shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

2.6 FIELD-APPLIED JACKETS

A. Field-applied jackets shall comply with ASTM C 921, Type I, unless otherwise indicated.

B. PVC Jacket: High-impact-resistant, UV-resistant PVC complying with ASTM D 1784, Class 16354-C; thickness as scheduled; roll stock ready for shop or field cutting and forming. Thickness is indicated in field-applied jacket schedules.
1. **Products:** Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 a. Johns Manville; Zeston.
 c. Proto Corporation; LoSmoke.
 d. Speedline Corporation; SmokeSafe.
 e. Or equal

2. **Adhesive:** As recommended by jacket material manufacturer.

3. **Color:** Color as selected by Architect.

4. **Factory-fabricated fitting covers to match jacket if available; otherwise, field fabricate.**
 a. Shapes: 45- and 90-degree, short- and long-radius elbows, tees, valves, flanges, unions, reducers, end caps, soil-pipe hubs, traps, mechanical joints, and P-trap and supply covers for lavatories.

C. **Metal Jacket:**

1. **Products:** Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 b. ITW Insulation Systems; Aluminum and Stainless Steel Jacketing.
 c. RPR Products, Inc.; Insul-Mate.
 d. Or equal

2. **Aluminum Jacket:** Comply with ASTM B 209, Alloy 3003, 3005, 3105, or 5005, Temper H-14.
 a. Sheet and roll stock ready for shop or field sizing.
 b. Finish and thickness are indicated in field-applied jacket schedules.
 c. Moisture Barrier for Indoor Applications: 3-mil- thick, heat-bonded polyethylene and kraft paper.
 d. Moisture Barrier for Outdoor Applications: 3-mil- thick, heat-bonded polyethylene and kraft paper.
 e. Factory-Fabricated Fitting Covers:

 1) Same material, finish, and thickness as jacket.
 2) Preformed 2-piece or gore, 45- and 90-degree, short- and long-radius elbows.
 3) Tee covers.
 4) Flange and union covers.
 5) End caps.
 6) Beveled collars.
 7) Valve covers.
 8) Field fabricate fitting covers only if factory-fabricated fitting covers are not available.

2.7 **TAPES**

A. **PVC Tape:** White vapor-retarder tape matching field-applied PVC jacket with acrylic adhesive; suitable for indoor and outdoor applications.
1. **Products**: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 a. ABI, Ideal Tape Division; 370 White PVC tape.
 b. Compac Corporation; 130.
 c. Venture Tape; 1506 CW NS.
 d. Or equal

2. **Width**: 2 inches.
3. **Thickness**: 6 mils.
4. **Adhesion**: 64 ounces force/inch in width.
5. **Elongation**: 500 percent.
6. **Tensile Strength**: 18 lbf/inch in width.

2.8 SECUREMENTS

A. Bands:
1. **Products**: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 a. ITW Insulation Systems; Gerrard Strapping and Seals.
 b. RPR Products, Inc.; Insul-Mate Strapping, Seals, and Springs.
 c. Or equal
2. **Stainless Steel**: ASTM A 167 or ASTM A 240/A 240M, Type 316; 0.015 inch thick, 3/4 inch wide with closed seal.
3. **Aluminum**: ASTM B 209, Alloy 3003, 3005, 3105, or 5005; Temper H-14, 0.020 inch thick, 3/4 inch wide with closed seal.
4. **Springs**: Twin spring set constructed of stainless steel with ends flat and slotted to accept metal bands. Spring size determined by manufacturer for application.

B. Staples: Outward-clinching insulation staples, nominal 3/4-inch wide, stainless steel or Monel.

C. Wire: 0.080-inch nickel-copper alloy, 0.062-inch soft-annealed, stainless steel, or 0.062-inch soft-annealed, galvanized steel.

1. **Manufacturers**: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 b. Or equal

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates and conditions for compliance with requirements for installation tolerances and other conditions affecting performance of insulation application.
1. Verify that systems to be insulated have been tested and are free of defects.
2. Verify that surfaces to be insulated are clean and dry.
3. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.

B. Surface Preparation: Clean and prepare surfaces to be insulated. Before insulating, apply a corrosion coating to insulated surfaces as follows:

1. Stainless Steel: Coat 300 series stainless steel with an epoxy primer 5 mils thick and an epoxy finish 5 mils thick if operating in a temperature range between 140 and 300 deg F. Consult coating manufacturer for appropriate coating materials and application methods for operating temperature range.
2. Carbon Steel: Coat carbon steel operating at a service temperature between 32 and 300 deg F with an epoxy coating. Consult coating manufacturer for appropriate coating materials and application methods for operating temperature range.

C. Mix insulating cements with clean potable water; if insulating cements are to be in contact with stainless-steel surfaces, use demineralized water.

3.3 GENERAL INSTALLATION REQUIREMENTS

A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of piping including fittings, valves, and specialties.

B. Install insulation materials, forms, vapor barriers or retarders, jackets, and thicknesses required for each item of pipe system as specified in insulation system schedules.

C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.

D. Install insulation with longitudinal seams at top and bottom of horizontal runs.

E. Install multiple layers of insulation with longitudinal and end seams staggered.

F. Do not weld brackets, clips, or other attachment devices to piping, fittings, and specialties.

G. Keep insulation materials dry during application and finishing.

H. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.

I. Install insulation with least number of joints practical.

J. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.

1. Install insulation continuously through hangers and around anchor attachments.
2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends at attachment to structure with vapor-barrier mastic.

3. Install insert materials and install insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.

4. Cover inserts with jacket material matching adjacent pipe insulation. Install shields over jacket, arranged to protect jacket from tear or puncture by hanger, support, and shield.

K. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses.

L. Install insulation with factory-applied jackets as follows:

1. Draw jacket tight and smooth.
2. Cover circumferential joints with 3-inch wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip, spaced 4 inches o.c.
3. Overlap jacket longitudinal seams at least 1-1/2 inches. Install insulation with longitudinal seams at bottom of pipe. Clean and dry surface to receive self-sealing lap. Staple laps with outward clinching staples along edge at 4 inches o.c.
 a. For below-ambient services, apply vapor-barrier mastic over staples.
4. Cover joints and seams with tape, according to insulation material manufacturer's written instructions, to maintain vapor seal.
5. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints and at ends adjacent to pipe flanges and fittings.

M. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness.

N. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.

O. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.

P. For above-ambient services, do not install insulation to the following:

1. Vibration-control devices.
2. Testing agency labels and stamps.
3. Nameplates and data plates.
5. Handholes.
6. Cleanouts.

3.4 PENETRATIONS

A. Insulation Installation at Roof Penetrations: Install insulation continuously through roof penetrations.

1. Seal penetrations with flashing sealant.
2. For applications requiring only indoor insulation, terminate insulation above roof surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
3. Extend jacket of outdoor insulation outside roof flashing at least 2 inches below top of roof flashing.
4. Seal jacket to roof flashing with flashing sealant.

B. Insulation Installation at Aboveground Exterior Wall Penetrations: Install insulation continuously through wall penetrations.
 1. Seal penetrations with flashing sealant.
 2. For applications requiring only indoor insulation, terminate insulation inside wall surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 3. Extend jacket of outdoor insulation outside wall flashing and overlap wall flashing at least 2 inches.
 4. Seal jacket to wall flashing with flashing sealant.

C. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.

D. Insulation Installation at Fire-Rated Wall and Partition Penetrations: Install insulation continuously through penetrations of fire-rated walls and partitions.
 1. Comply with requirements in Section 078413 "Penetration Firestopping" for firestopping and fire-resistant joint sealers.

E. Insulation Installation at Floor Penetrations:
 1. Pipe: Install insulation continuously through floor penetrations.
 2. Seal penetrations through fire-rated assemblies. Comply with requirements in Section 078413 "Penetration Firestopping."

3.5 GENERAL PIPE INSULATION INSTALLATION

A. Requirements in this article generally apply to all insulation materials except where more specific requirements are specified in various pipe insulation material installation articles.

B. Insulation Installation on Fittings, Valves, Strainers, Flanges, and Unions:
 1. Install insulation over fittings, valves, strainers, flanges, unions, and other specialties with continuous thermal and vapor-retarder integrity unless otherwise indicated.
 2. Insulate pipe elbows using preformed fitting insulation or mitered fittings made from same material and density as adjacent pipe insulation. Each piece shall be butted tightly against adjoining piece and bonded with adhesive. Fill joints, seams, voids, and irregular surfaces with insulating cement finished to a smooth, hard, and uniform contour that is uniform with adjoining pipe insulation.
 3. Insulate tee fittings with preformed fitting insulation or sectional pipe insulation of same material and thickness as used for adjacent pipe. Cut sectional pipe insulation to fit. Butt each section closely to the next and hold in place with tie wire. Bond pieces with adhesive.
 4. Insulate valves using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. For valves, insulate up to and including the bonnets, valve stuffing-box studs, bolts, and nuts. Fill joints, seams, and irregular surfaces with insulating cement.
 5. Insulate strainers using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. Fill joints, seams, and irregular surfaces with insulating cement. Insulate strainers so strainer basket
flange or plug can be easily removed and replaced without damaging the insulation and jacket. Provide a removable reusable insulation cover. For below-ambient services, provide a design that maintains vapor barrier.

6. Insulate flanges and unions using a section of oversized preformed pipe insulation. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker.

7. Cover segmented insulated surfaces with a layer of finishing cement and coat with a mastic. Install vapor-barrier mastic for below-ambient services and a breather mastic for above-ambient services. Reinforce the mastic with fabric-reinforcing mesh. Trowel the mastic to a smooth and well-shaped contour.

8. For services not specified to receive a field-applied jacket except for flexible elastomeric and polyolefin, install fitted PVC cover over elbows, tees, strainers, valves, flanges, and unions. Terminate ends with PVC end caps. Tape PVC covers to adjoining insulation facing using PVC tape.

9. Stencil or label the outside insulation jacket of each union with the word "union." Match size and color of pipe labels.

C. Insulate instrument connections for thermometers, pressure gages, pressure temperature taps, test connections, flow meters, sensors, switches, and transmitters on insulated pipes. Shape insulation at these connections by tapering it to and around the connection with insulating cement and finish with finishing cement, mastic, and flashing sealant.

D. Install removable insulation covers at locations indicated. Installation shall conform to the following:

1. Make removable flange and union insulation from sectional pipe insulation of same thickness as that on adjoining pipe. Install same insulation jacket as adjoining pipe insulation.

2. When flange and union covers are made from sectional pipe insulation, extend insulation from flanges or union long at least two times the insulation thickness over adjacent pipe insulation on each side of flange or union. Secure flange cover in place with stainless-steel or aluminum bands. Select band material compatible with insulation and jacket.

3. Construct removable valve insulation covers in same manner as for flanges, except divide the two-part section on the vertical center line of valve body.

4. When covers are made from block insulation, make two halves, each consisting of mitered blocks wired to stainless-steel fabric. Secure this wire frame, with its attached insulation, to flanges with tie wire. Extend insulation at least 2 inches over adjacent pipe insulation on each side of valve. Fill space between flange or union cover and pipe insulation with insulating cement. Finish cover assembly with insulating cement applied in two coats. After first coat is dry, apply and trowel second coat to a smooth finish.

5. Unless a PVC jacket is indicated in field-applied jacket schedules, finish exposed surfaces with a metal jacket.

3.6 INSTALLATION OF FLEXIBLE ELASTOMERIC INSULATION

A. Seal longitudinal seams and end joints with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

B. Insulation Installation on Pipe Flanges:

1. Install pipe insulation to outer diameter of pipe flange.

2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.

3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of sheet insulation of same thickness as pipe insulation.
4. Secure insulation to flanges and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

C. Insulation Installation on Pipe Fittings and Elbows:

1. Install mitered sections of pipe insulation.
2. Secure insulation materials and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

D. Insulation Installation on Valves and Pipe Specialties:

1. Install preformed valve covers manufactured of same material as pipe insulation when available.
2. When preformed valve covers are not available, install cut sections of pipe and sheet insulation to valve body. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
3. Install insulation to flanges as specified for flange insulation application.
4. Secure insulation to valves and specialties and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

3.7 FIELD-APPLIED JACKET INSTALLATION

A. Where PVC jackets are indicated, install with 1-inch overlap at longitudinal seams and end joints; for horizontal applications. Seal with manufacturer's recommended adhesive.

1. Apply two continuous beads of adhesive to seams and joints, one bead under lap and the finish bead along seam and joint edge.

B. Where metal jackets are indicated, install with 2-inch overlap at longitudinal seams and end joints. Overlap longitudinal seams arranged to shed water. Seal end joints with weatherproof sealant recommended by insulation manufacturer. Secure jacket with stainless-steel bands 12 inches o.c. and at end joints.

C. Where PVDC jackets are indicated, install as follows:

1. Apply three separate wraps of filament tape per insulation section to secure pipe insulation to pipe prior to installation of PVDC jacket.
2. Wrap factory-presized jackets around individual pipe insulation sections with one end overlapping the previously installed sheet. Install presized jacket with an approximate overlap at butt joint of 2 inches over the previous section. Adhere lap seal using adhesive or SSL, and then apply 1-1/4 circumferences of appropriate PVDC tape around overlapped butt joint.
3. Continuous jacket can be spiral-wrapped around a length of pipe insulation. Apply adhesive or PVDC tape at overlapped spiral edge. When electing to use adhesives, refer to manufacturer's written instructions for application of adhesives along this spiral edge to maintain a permanent bond.
4. Jacket can be wrapped in cigarette fashion along length of roll for insulation systems with an outer circumference of 33-1/2 inches or less. The 33-1/2-inch circumference limit allows for 2-inch-overlap seal. Using the length of roll allows for longer sections of jacket to be installed at one time. Use adhesive on the lap seal. Visually inspect lap seal for "fishmouthing," and use PVDC tape along lap seal to secure joint.
5. Repair holes or tears in PVDC jacket by placing PVDC tape over the hole or tear and wrapping a minimum of 1-1/4 circumferences to avoid damage to tape edges.
3.8 FINISHES

A. Pipe Insulation with ASJ, Glass-Cloth, or Other Paintable Jacket Material: Paint jacket with paint system identified below and as specified in Section 099113 "Exterior Painting" and Section 099123 "Interior Painting."

1. Flat Acrylic Finish: Two finish coats over a primer that is compatible with jacket material and finish coat paint. Add fungicidal agent to render fabric mildew proof.

B. Flexible Elastomeric Thermal Insulation: After adhesive has fully cured, apply two coats of insulation manufacturer's recommended protective coating.

C. Color: Final color as selected by Architect. Vary first and second coats to allow visual inspection of the completed Work.

D. Do not field paint aluminum or stainless-steel jackets.

3.9 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.

B. Perform tests and inspections.

C. Tests and Inspections:

1. Inspect pipe, fittings, strainers, and valves, randomly selected by Architect, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to three locations of straight pipe, three locations of threaded fittings, three locations of welded fittings, two locations of threaded strainers, two locations of welded strainers, three locations of threaded valves, and three locations of flanged valves for each pipe service defined in the "Piping Insulation Schedule, General" Article.

D. All insulation applications will be considered defective Work if sample inspection reveals noncompliance with requirements.

3.10 PIPING INSULATION SCHEDULE, GENERAL

A. Acceptable preformed pipe and tubular insulation materials and thicknesses are identified for each piping system and pipe size range. If more than one material is listed for a piping system, selection from materials listed is Contractor's option.

B. Items Not Insulated: Unless otherwise indicated, do not install insulation on the following:

1. Drainage piping located in crawl spaces.
2. Underground piping.
3. Chrome-plated pipes and fittings unless there is a potential for personnel injury.
3.11 INDOOR PIPING INSULATION SCHEDULE

A. Condensate and Equipment Drain Water below 60 Deg F:
 1. All Pipe Sizes: Insulation shall be one of the following:
 a. Flexible Elastomeric: 1 inch thick.

B. Refrigerant Suction and Hot-Gas Piping and Tubing:
 1. All Pipe Sizes: Insulation shall be one of the following:
 a. Flexible Elastomeric: 1 inch thick.

3.12 OUTDOOR, ABOVEGROUND PIPING INSULATION SCHEDULE

A. Refrigerant Suction and Hot-Gas Piping and Tubing:
 1. All Pipe Sizes: Insulation shall be one of the following:
 a. Flexible Elastomeric: 2 inches thick.

3.13 INDOOR, FIELD-APPLIED JACKET SCHEDULE

A. Install jacket over insulation material. For insulation with factory-applied jacket, install the field-applied jacket over the factory-applied jacket.

B. If more than one material is listed, selection from materials listed is Contractor's option.

C. Piping, Concealed:
 1. None.

D. Piping, Exposed:
 1. PVC, Color coordinated with architect during submittal phase: 30 mils thick.

3.14 OUTDOOR, FIELD-APPLIED JACKET SCHEDULE

A. Install jacket over insulation material. For insulation with factory-applied jacket, install the field-applied jacket over the factory-applied jacket.

B. If more than one material is listed, selection from materials listed is Contractor's option.

C. Piping, Concealed:
 1. Aluminum, Smooth: 0.032 inch thick.

D. Piping, Exposed:
 1. Painted Aluminum, Smooth with Z-Shaped Locking Seam: 0.032 inch thick. Color coordinated with architect during submittal phase.

END OF SECTION 230719
SECTION 230923 – DDC SYSTEM FOR HVAC

PART 1 GENERAL

1.1 SCOPE OF WORK

A. The work for the Building Automated Controls System will be performed by Siemens Building Technologies under direct contract with Coastal Carolina University. This specification is for information and coordination purposes only. The contractor shall coordinate and cooperate with the Building Automated Controls contractor to ensure that the Building Automated Controls contractor can accomplish the work required in this section in an appropriate and timely manner. The contractor shall be responsible for performing corrective actions required by the Building Automated Controls contractor. The local contact for Siemens Building Technologies for this project is Control Management, Inc. (803-765-9070).

B. The Building Automation System (BAS) manufacturer shall furnish and install a fully integrated building automation system, incorporating direct digital control (DDC) for energy management, equipment monitoring and complete temperature control system as specified herein. The installation of the control system shall be performed under the direct supervision of the controls manufacturer with the shop drawings, flow diagrams, bill of materials, component designation or identification number and sequence of operation all bearing the name of the manufacturer. The installing manufacturer shall certify in writing, that the shop drawings have been prepared by the equipment manufacturer and that the equipment manufacturer has supervised their installation. In addition, the equipment manufacturer shall certify, in writing, that the shop drawings were prepared by their company and that all temperature control equipment was installed under their direct supervision.

C. All materials and equipment used shall be standard components, regularly manufactured for this and/or other systems and not custom designed specifically for this project. All systems and components shall have been thoroughly tested and proven in actual use for at least two years.

D. Building Automated Controls contractor shall be responsible for all BAS and Temperature Control wiring and conduit for a complete and operable system. All wiring shall be done in accordance with all local and national codes. Building Automated Controls contractor shall refer to Division 26 specifications for additional requirements.

E. Building Automated Controls contractor shall be responsible for providing all variable frequency drives unless noted otherwise on plans.

1.2 RELATED SECTIONS

A. Division 26 specifications.

1.3 WORK BY OTHERS

A. Mechanical contractor installs all wells, valves, taps, dampers, flow stations, VAVs if furnished by BAS manufacturer.

B. Electrical Contractor provides:
 1. 120V power to all HVAC control panels and devices requiring power.
 2. Wiring of all power feeds through all disconnects and starters to electrical motors.
 3. Wiring of any remote start/stop switches and manual or automatic motor speed control devices not furnished by Controls Contractor.

C. Products furnished but not installed under this section:
 1. Duct-work Accessories:
a. Air-flow Stations
b. Motorized Control Damper Actuators

D. Products installed but not furnished under this section
1. Fire Alarm Systems
a. Duct Smoke Detectors

1.4 QUALITY ASSURANCE

A. The BAS system shall be designed and installed, commissioned and serviced by factory trained personnel. Manufacturer shall have an in-place support facility within 30 miles of the site with technical staff, spare parts inventory and necessary test and diagnostic equipment.

B. Materials and equipment shall be the catalogued products of manufacturers regularly engaged in production and installation of automatic temperature control systems and shall be manufacturer's latest standard design that complies with the specification requirements.

1.5 SUBMITTALS

A. Submit documentation submittals in the following phased delivery schedule:
1. Valve and damper schedules
2. Equipment data cut sheets
3. System schematics, including:
a. Sequence of operations.
b. Point names.
c. Point addresses.
d. Interface wiring diagrams.
e. Panel layouts.
f. System riser diagrams.
4. Auto-CAD compatible as-built drawings

B. Upon project completion, submit operation and maintenance manuals, consisting of the following:
1. Index sheet, listing contents in alphabetical order.
2. Manufacturer's equipment parts list of all functional components of the system, Auto-CAD disk of system schematics, including wiring diagrams.
3. Description of sequence of operations.
4. As-Built interconnection wiring diagrams.
6. Trunk cable schematic showing remote electronic panel locations, and all trunk data.

C. Submit shop drawings and product data sheets indicating configuration, general assembly, and materials used in fabrication.

D. Submit product performance data indicating design air flow, minimum static pressure drop, fan operating condition.

E. Submit sound power and noise criteria (NC) values for radiated and discharge paths.

1.6 REFERENCES

A. NFPA 90A - Installation of Air Conditioning and Ventilation Systems.

B. UL 181 - Factory-Made Air Ducts and Connectors.
1.7 QUALIFICATIONS

A. Manufacturer: The company manufacturing the products specified in this section shall have a minimum of ten years experience producing products of this type.

1.6 WARRANTY

A. Provide all services, materials and equipment necessary for the successful operation of the entire BAS system for a period of one year after beneficial use.

B. The adjustment, required testing, and repair of the system includes all computer equipment, transmission equipment and all sensors and control devices.

C. Provide Manufacturer’s 5-year warranty.

PART 2 PRODUCTS

2.1 MANUFACTURERS

A. Siemens - (extend existing Siemens campus network control systems)
 contact: Control Management, Inc. (803) 765-9070

2.2 NETWORKING COMMUNICATIONS

A. The design of the BAS shall network operator workstations and stand-alone DDC Controllers. The network architecture shall consist of two levels, a high performance peer-to-peer building level network and DDC Controller floor level local area networks with access being totally transparent to the user when accessing data or developing control programs.

B. The design of BAS shall allow the co-existence of new DDC Controllers with all existing Siemens DDC Controllers in the same network without the use of gateways or protocol converters.

2.3 DDC CONTROLLER FLOOR LEVEL NETWORK

A. This level of communication shall support a family of application specific controllers and shall communicate with the peer-to-peer network through DDC Controllers for transmission of global data.

2.4 DDC CONTROLLER

A. DDC Controllers shall be a 16-bit stand-alone, multi-tasking, multi-user, real-time digital control processors consisting of modular hardware with plug-in enclosed processors, communication controllers, power supplies and input/output point modules. Controller size shall be sufficient to fully meet the requirements of this specification and the attached point I/O schedule. Each controller shall support a
minimum of three (3) Floor Level LAN Device Networks.

B. Each DDC Controller shall have sufficient memory to support its own operating system and databases, including:
1. Control processes.
2. Energy management applications.
3. Alarm management applications including custom alarm messages for each level alarm for each point in the system.
4. Historical/trend data for points specified.
5. Maintenance support applications.
7. Operator I/O.
8. Dial-up communications.

C. Each DDC Controller shall support firmware upgrades without the need to replace hardware.

D. Provide all processors, power supplies and communication controllers so that the implementation of a point only requires the addition of the appropriate point input/output termination module and wiring.

E. DDC Controllers shall provide a minimum two RS-232C serial data communication ports for operation of operator I/O devices such as industry standard printers, operator terminals, modems and portable laptop operator's terminals. DDC Controllers shall allow temporary use of portable devices without interrupting the normal operation of permanently connected modems, printers or terminals.

F. Each DDC Controller shall continuously perform self-diagnostics, communication diagnosis and diagnosis of all panel components. The DDC Controller shall provide both local and remote annunciation of any detected component failures, low battery conditions or repeated failure to establish communication.

G. In the event of the loss of normal power, there shall be an orderly shutdown of all DDC Controllers to prevent the loss of database or operating system software. Non-volatile memory shall be incorporated for all critical controller configuration data and battery backup shall be provided to support the real-time clock and all volatile memory for a minimum of 72 hours.
1. Upon restoration of normal power, the DDC Controller shall automatically resume full operation without manual intervention.
2. Should DDC Controller memory be lost for any reason, the user shall have the capability of reloading the DDC Controller via the local RS-232C port, via telephone line dial-in or from a network workstation PC.

2.5 FLOOR LEVEL NETWORK APPLICATION SPECIFIC CONTROLLERS (ASC)

A. Each DDC Controller shall be able to extend its performance and capacity through the use of remote application specific controllers (ASCs) through Floor Level LAN Device Networks.

B. Each ASC shall operate as a stand-alone controller capable of performing its specified control responsibilities independently of other controllers in the network. Each ASC shall be a microprocessor-based, multi-tasking, real-time digital control processor. Provide the following types of ASCs as a minimum:
1. Mechanical Equipment Controllers.
2. Terminal Equipment Controllers.

C. Each ASC shall be capable of control of the terminal device independent of the manufacturer of the terminal device.
D. Mechanical Equipment Controllers:
 1. Provide for control of HVAC systems and equipment including, but not limited to, the following:
 a. Air handling unit systems.
 b. Chilled water and hot water systems
 2. Controllers shall include all point inputs and outputs necessary to perform the specified control sequences.
 3. Each controller shall support its own real-time operating system. Provide a time clock with battery backup to allow for stand-alone operation in the event communication with its DDC Controller is lost and to insure protection during power outages.
 4. All programs shall be field-customized to meet the user's exact control strategy requirements. HVAC System controllers utilizing pre-packaged or canned programs shall not be acceptable.
 5. Programming of central system controllers shall utilize the same language and code as used by DDC Controllers to maximize system flexibility and ease of use.
 6. Each controller shall have connection provisions for a portable operator's terminal. This tool shall allow the user to display, generate or modify all point databases and operating programs.

E. Terminal Equipment Controllers and Room Pressurization Controllers
 1. Provide for control of each piece of equipment, including, but not limited to, the following:
 a. Variable Air Volume (VAV) boxes.
 2. Controllers shall include all point inputs and outputs necessary to perform the specified control sequences. Analog outputs shall be 24V floating control, allowing for interface to a variety of modulating actuators. Terminal controllers utilizing proprietary control signals and actuators shall not be acceptable
 3. Each controller performing space temperature control shall be provided with a matching room temperature sensor. The sensor may be either RTD or thermistor type.
 4. Each room temperature sensor shall include a terminal jack integral to the sensor assembly. The terminal jack shall be used to connect a portable laptop or similar operator's terminal to control and monitor all hardware and software points associated with the controller.
 5. Each room sensor shall also include the following auxiliary devices:
 a. Setpoint Adjustment Dial.
 b. Temperature Indicator.
 c. Override Switch.
 6. The setpoint adjustment dial shall allow for modification of the temperature by the occupant. Setpoint adjustment may be locked out, overridden or limited as to time or temperature through software by an authorized operator at the central workstation, MBC or via the portable programming tool.
 7. The temperature indicator shall be a LCD thermometer and shall be visible without removing the sensor cover.
 8. The override switch shall initiate override of the night setback mode to normal (day) operation when activated by the occupant. The override function may be locked out, overridden or limited as to the time through software by an authorized operator at the central workstation, MBC or via the portable programming tool.

2.6 PERSONAL COMPUTER OPERATOR WORKSTATION HARDWARE (EXISTING ON CAMPUS)

 A. All new system software, graphics, point database information, and programming shall be added to the existing Personal computer operator workstation.

2.7 WORKSTATION OPERATOR INTERFACE (EXISTING ON CAMPUS)

 A. Basic Interface Description
 1. Operator workstation interface software shall minimize operator training through the use of English language prompting, 30 character English language point identification, on-line help, and industry standard PC application software. The software shall provide, as a minimum, the following functionality:
a. Real-time graphical viewing and control of environment.
b. Scheduling and override of building operations.
c. Collection and analysis of historical data.
d. Point database editing, storage and downloading of controller databases.
e. Alarm reporting, routing, messaging, and acknowledgment.

B. Dynamic Color Graphic Displays
 1. Color graphic floor plan displays and system schematics for each piece of mechanical equipment
 shall be installed under this contract. Graphics to be created include:
 a. Building floor plan with area temperatures displayed.
 b. Each air handling unit.
 c. Each VAV box.
 d. Chilled Water System
 e. Hot Water System

2.8 FIELD DEVICES

 A. All devices and equipment shall be approved for installation by the Mechanical Consulting Engineer.

 B. Temperature Sensors - with accuracy of + .5 deg F @ 77 deg F).
 1. Digital room sensors shall have LCD display, day / night override button, and setpoint slide
 adjustment override options. The setpoint slide adjustment can be software limited by the
 automation system to limit the amount of room adjustment.

 C. Humidity Sensors - with accuracy of + 2% RH @ 77 deg F including hysteresis, linearity, and
 repeatability.

 D. Pressure Sensors - Setra.

 E. Dampers, sized for specific application (supplied by Mechanical Contractor).

 F. Damper Operators, sized for specific application.

 G. Automatic Control Valves, sized for specific application.

 H. Air Volume Measurement. (Duct Airflow Stations or Fan Inlet Probe as required)

 I. Smoke Detectors - BRK 120V ionization duct type.

 J. Firestats - for applications less than 2000 CFM.

 K. Low Temperature Detection Stat.

 L. Electric Thermostats.

 M. Differential Pressure Switch.

 N. Boiler Emergency Shutoff Switch, provide with plastic cover.

2.9 DAMPER OPERATORS:

 A. All damper operators shall be electric and shall be two-position or proportional as indicated. They shall
 be furnished in sufficient numbers and with sufficient power to insure satisfactory operation of the
 damper to provide tight close off. They shall be spring return type to return the damper to the normal
 positions indicated. Mark full open and full closed positions of all dampers. Marks shall be made with
Bakelite nameplates, attached to ductwork.

2.10 VALVES:

A. All control valves shall have equal percentage modulating plugs to insure modulation of flow under varying loads. Valves shall be provided with proportioning operators of sufficient power to insure modulation and tight shut off. Valves shall be spring returned to either open or closed position in the event of failure as indicated in the description of operation. Valves 2" and smaller have brass bodies and screwed ends, 2-1/2" and larger shall have iron bodies and flanged ends.

2.12 AIRFLOW MEASURING STATIONS

A. All Airflow Measuring Stations shall be provided and installed by the HVAC Controls Contractor.

B. Manufacturers: Acceptable manufacturers, contingent upon compliance with the contract documents, are listed below. Equal products by other manufacturers are acceptable providing Substitutions are submitted in accordance with requirements listed elsewhere in the Bid Documents and approved by the A/E:
 1. Ebtron
 2. Ruskin Company.
 3. Air Monitor Corp.
 4. Tek-Air Systems, Inc.
 5. Or equal

C. Airflow measuring stations shall be provided and located in the outside and/or return air paths as indicated on the schedule and plans to measure airflow. Airflow measuring stations shall be tested per AMCA Standard 611 and licensed to bear the AMCA Ratings Seal for airflow measurement performance. Integral control damper blades shall be provided as galvanized steel and housed in a galvanized steel frame. Leakage rate shall not exceed 4 CFM/square foot at one inch water gauge complying with ASHRAE 90.1 maximum damper leakage.

D. The airflow measurement station shall measure up to 100 percent of the total outside air and/or return air. The airflow measurement station shall be capable of measuring down to 300 fpm. The airflow measuring device shall adjust for temperature variations. Output shall be provided from the station as a 2-10 VDC signal. Signal shall be proportional to air velocity. The accuracy of the measuring station shall be no greater than +/- 5 percent. Airflow measuring stations shall be mounted on the AHU interior.

E. The installing contractor shall provide duct-mounted pleated media MERV 8 filtration upstream of airflow monitoring stations requiring air straightening vanes to prevent blockage of vanes. A filter access door shall be provided for filter replacement that does not degrade the specified duct leakage class. Duct-mounted filtration section with access door for filter removal shall be tested for compliance to specified duct leakage class on the schedule and plans.

PART 3 EXECUTION

3.1 PROJECT MANAGEMENT

A. Provide a designated project manager who will be responsible for the following:
 1. Construct and maintain project schedule.
 2. On-site coordination with all applicable trades and subcontractors.
 3. Authorized to accept and execute orders or instructions from owner/architect.
 4. Attend project meetings as necessary to avoid conflicts and delays.
5. Make necessary field decisions relating to this scope of work.
6. Coordination/Single point of contact.

B. The contractor shall collaborate with the owner directly to determine the owner's preference for naming conventions, etc. before entering the data in to the system.

3.2 START-UP AND COMMISSIONING

A. When installation of the system is complete, calibrate equipment and verify transmission media operation before the system is placed on-line. All testing, calibrating, adjusting and final field tests shall be completed by the manufacturer. Verify that all systems are operable from local controls in the specified failure mode upon panel failure or loss of power.

B. Provide any recommendation for system modification in writing to owner. Do not make any system modification, including operating parameters and control settings, without prior approval of owner.

3.3 MISCELLANEOUS

A. The BAS shall monitor the CO2 levels via zone level CO2 sensors throughout, see plans for locations. If CO2 levels rise above the maximum setpoint, an alarm shall be generated at the front end workstation and the outdoor air damper for affected AHU shall modulate open to maintain CO2 levels beneath the maximum concentration level setpoint.

B. Refer to drawings for other control points which are to be included, but are not covered in this specification

3.4 TRAINING

A. The manufacturer shall provide factory trained instructor to give full instruction to designated personnel in the operation of the system installed. Instructors shall be thoroughly familiar with all aspects of the subject matter they are to teach. The manufacturer shall provide all students with a student binder containing product specific training modules for the system installed. All training shall be held during normal working hours of 8:00 am to 4:30 PM weekdays.

B. Provide 8 hours of training for Owner's designated operating personnel. Training shall include:
 1. Explanation of drawings, operations and maintenance manuals.
 2. Walk-through of the job to locate control components.
 3. Operator workstation and peripherals.
 4. DDC controller and ASC operation/function.
 5. Operator control functions including graphic generation and field panel programming.
 6. Explanation of adjustment, calibration and replacement procedures.

C. Since the Owner may require personnel to have more comprehensive understanding of the hardware and software, additional training must be available from the Manufacturer. If such training is required by the Owner, it will be contracted at a later date.

3.5 SEQUENCES OF OPERATIONS AND POINTS LIST

A. SEE DRAWINGS FOR SEQUENCES OF OPERATION AND POINTS LIST.

END OF SECTION 230923
SECTION 232300 - REFRIGERANT PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. This Section includes refrigerant piping used for air-conditioning applications.

1.3 PERFORMANCE REQUIREMENTS
A. Line Test Pressure for Refrigerant R-410A:

1.4 ACTION SUBMITTALS
A. Product Data: For each type of valve and refrigerant piping specialty indicated. Include pressure drop, based on manufacturer's test data, for the following:
 1. Thermostatic expansion valves.
 2. Solenoid valves.
 3. Hot-gas bypass valves.
 4. Filter dryers.
 5. Strainers.
 6. Pressure-regulating valves.

B. Shop Drawings: Show layout of refrigerant piping and specialties, including pipe, tube, and fitting sizes, flow capacities, valve arrangements and locations, slopes of horizontal runs, oil traps, double risers, wall and floor penetrations, and equipment connection details. Show interface and spatial relationships between piping and equipment.
 1. Shop Drawing Scale: 1/4 inch equals 1 foot.
 2. Refrigerant piping indicated on Drawings is schematic only. Size piping and design actual piping layout, including oil traps, double risers, specialties, and pipe and tube sizes to accommodate, as a minimum, equipment provided, elevation difference between compressor and evaporator, and length of piping to ensure proper operation and compliance with warranties of connected equipment.
1.5 INFORMATIONAL SUBMITTALS

A. Welding certificates.

B. Field quality-control test reports.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For refrigerant valves and piping specialties to include in maintenance manuals.

1.7 QUALITY ASSURANCE

A. Welding: Qualify procedures and personnel according to ASME Boiler and Pressure Vessel Code: Section IX, "Welding and Brazing Qualifications."

C. Comply with ASME B31.5, "Refrigeration Piping and Heat Transfer Components."

1.8 PRODUCT STORAGE AND HANDLING

A. Store piping in a clean and protected area with end caps in place to ensure that piping interior and exterior are clean when installed.

1.9 COORDINATION

A. Coordinate size and location of roof curbs, equipment supports, and roof penetrations. These items are specified in Section 077200 "Roof Accessories."

PART 2 - PRODUCTS

2.1 COPPER TUBE AND FITTINGS

A. Copper Tube: ASTM B 280, Type ACR.

B. Wrought-Copper Fittings: ASME B16.22.

C. Wrought-Copper Unions: ASME B16.22.

D. Solder Filler Metals: ASTM B 32. Use 95-5 tin antimony or alloy HB solder to join copper socket fittings on copper pipe.

E. Brazing Filler Metals: AWS A5.8.

F. Flexible Connectors:

2. End Connections: Socket ends.
3. Offset Performance: Capable of minimum 3/4-inch misalignment in minimum 7-inch-long assembly.
5. Maximum Operating Temperature: 250 deg F.

2.2 VALVES AND SPECIALTIES

A. Diaphragm Packless Valves:
 1. Body and Bonnet: Forged brass or cast bronze; globe design with straight-through or angle pattern.
 3. Operator: Rising stem and hand wheel.
 5. End Connections: Socket, union, or flanged.
 7. Maximum Operating Temperature: 275 deg F.

B. Packed-Angle Valves:
 1. Body and Bonnet: Forged brass or cast bronze.
 2. Packing: Molded stem, back seating, and replaceable under pressure.
 3. Operator: Rising stem.
 5. Seal Cap: Forged-brass or valox hex cap.
 6. End Connections: Socket, union, threaded, or flanged.
 8. Maximum Operating Temperature: 275 deg F.

C. Check Valves:
 1. Body: Ductile iron, forged brass, or cast bronze; globe pattern.
 2. Bonnet: Bolted ductile iron, forged brass, or cast bronze; or brass hex plug.
 6. End Connections: Socket, union, threaded, or flanged.
 7. Maximum Opening Pressure: 0.50 psig.
 9. Maximum Operating Temperature: 275 deg F.

D. Service Valves:
 1. Body: Forged brass with brass cap including key end to remove core.
 2. Core: Removable ball-type check valve with stainless-steel spring.
 4. End Connections: Copper spring.

E. Solenoid Valves: Comply with ARI 760 and UL 429; listed and labeled by an NRTL.
4. End Connections: Threaded.
5. Electrical: Molded, watertight coil enclosure of type required by location with 1/2-inch conduit adapter.
7. Maximum Operating Temperature: 240 deg F.

F. Safety Relief Valves: Comply with ASME Boiler and Pressure Vessel Code; listed and labeled by an NRTL.
1. Body and Bonnet: Ductile iron and steel, with neoprene O-ring seal.
4. End Connections: Threaded.
6. Maximum Operating Temperature: 240 deg F.

G. Thermostatic Expansion Valves: Comply with ARI 750.
1. Body, Bonnet, and Seal Cap: Forged brass or steel.
4. Capillary and Bulb: Copper tubing filled with refrigerant charge.
5. Suction Temperature: 40 deg F.
7. Reverse-flow option (for heat-pump applications).
8. End Connections: Socket, flare, or threaded union.

H. Hot-Gas Bypass Valves: Comply with UL 429; listed and labeled by an NRTL.
1. Body, Bonnet, and Seal Cap: Ductile iron or steel.
5. Seat: Polytetrafluoroethylene.
6. Electrical: Molded, watertight coil enclosure of type required by location with 1/2-inch conduit adapter.
8. Throttling Range: Maximum 5 psig.
10. Maximum Operating Temperature: 240 deg F.

I. Straight-Type Strainers:
2. Screen: 100-mesh stainless steel.
3. End Connections: Socket or flare.
5. Maximum Operating Temperature: 275 deg F.

J. Angle-Type Strainers:
1. Body: Forged brass or cast bronze.
2. Drain Plug: Brass hex plug.
3. Screen: 100-mesh monel.
4. End Connections: Socket or flare.
6. Maximum Operating Temperature: 275 deg F.

K. Moisture/Liquid Indicators:

2. Window: Replaceable, clear, fused glass window with indicating element protected by filter screen.
3. Indicator: Color coded to show moisture content in ppm.
5. End Connections: Socket or flare.
7. Maximum Operating Temperature: 240 deg F.

L. Replaceable-Core Filter Dryers: Comply with ARI 730.

1. Body and Cover: Painted-steel shell with ductile-iron cover, stainless-steel screws, and neoprene gaskets.
2. Filter Media: 10 micron, pleated with integral end rings; stainless-steel support.
4. Designed for reverse flow (for heat-pump applications).
5. End Connections: Socket.
9. Maximum Operating Temperature: 240 deg F.

M. Permanent Filter Dryers: Comply with ARI 730.

2. Filter Media: 10 micron, pleated with integral end rings; stainless-steel support.
4. Designed for reverse flow (for heat-pump applications).
5. End Connections: Socket.
9. Maximum Operating Temperature: 240 deg F.

N. Mufflers:

2. End Connections: Socket or flare.
4. Maximum Operating Temperature: 275 deg F.

O. Receivers: Comply with ARI 495.
1. Comply with ASME Boiler and Pressure Vessel Code; listed and labeled by an NRTL.
2. Comply with UL 207; listed and labeled by an NRTL.
4. Tappings: Inlet, outlet, liquid level indicator, and safety relief valve.
5. End Connections: Socket or threaded.
7. Maximum Operating Temperature: 275 deg F.

P. Liquid Accumulators: Comply with ARI 495.
2. End Connections: Socket or threaded.
4. Maximum Operating Temperature: 275 deg F.

2.3 REFRIGERANTS
A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
1. Atofina Chemicals, Inc.
2. DuPont Company; Fluorochemicals Div.
3. Honeywell, Inc.; Genetron Refrigerants.
4. INEOS Fluor Americas LLC.
5. Or Equal.
C. ASHRAE 34, R-410A: Pentafluoroethane/Difluoromethane.

PART 3 - EXECUTION

3.1 PIPING APPLICATIONS FOR REFRIGERANT
A. Suction Lines NPS 4 and Smaller for Conventional Air-Conditioning Applications: Copper, Type ACR K, drawn-temper tubing and wrought-copper fittings with soldered joints.
B. Hot-Gas and Liquid Lines, and Suction Lines for Heat-Pump Applications: Copper, Type K, annealed- or drawn-temper tubing and wrought-copper fittings with brazed or soldered joints.
C. Safety-Relief-Valve Discharge Piping: Copper, Type K, annealed- or drawn-temper tubing and wrought- copper fittings with brazed or soldered joints.

3.2 VALVE AND SPECIALTY APPLICATIONS
A. Install diaphragm packless or packed-angle valves in suction and discharge lines of compressor.
B. Install service valves for gage taps at inlet and outlet of hot-gas bypass valves and strainers if they are not an integral part of valves and strainers.
C. Install a check valve at the compressor discharge and a liquid accumulator at the compressor suction connection.

D. Except as otherwise indicated, install diaphragm packless or packed-angle valves on inlet and outlet side of filter dryers.

E. Install a full-sized, three-valve bypass around filter dryers.

F. Install solenoid valves upstream from each expansion valve and hot-gas bypass valve. Install solenoid valves in horizontal lines with coil at top.

G. Install thermostatic expansion valves as close as possible to distributors on evaporators.
 1. Install valve so diaphragm case is warmer than bulb.
 2. Secure bulb to clean, straight, horizontal section of suction line using two bulb straps. Do not mount bulb in a trap or at bottom of the line.
 3. If external equalizer lines are required, make connection where it will reflect suction-line pressure at bulb location.

H. Install safety relief valves where required by ASME Boiler and Pressure Vessel Code. Pipe safety-relief-valve discharge line to outside according to ASHRAE 15.

I. Install moisture/liquid indicators in liquid line at the inlet of the thermostatic expansion valve or at the inlet of the evaporator coil capillary tube.

J. Install strainers upstream from and adjacent to the following unless they are furnished as an integral assembly for device being protected:
 1. Solenoid valves.
 2. Thermostatic expansion valves.
 3. Hot-gas bypass valves.
 4. Compressor.

K. Install filter dryers in liquid line between compressor and thermostatic expansion valve, and in the suction line at the compressor.

L. Install receivers sized to accommodate pump-down charge.

M. Install flexible connectors at compressors.

3.3 PIPING INSTALLATION

A. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems; indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on Shop Drawings.

B. Install refrigerant piping according to ASHRAE 15.

C. Install piping in concealed locations unless otherwise indicated and except in equipment rooms and service areas.
D. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.

E. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.

F. Install piping adjacent to machines to allow service and maintenance.

G. Install piping free of sags and bends.

H. Install fittings for changes in direction and branch connections.

I. Select system components with pressure rating equal to or greater than system operating pressure.

J. Refer to Section 230900 "Instrumentation and Control for HVAC" and Section 230993 "Sequence of Operations for HVAC Controls" for solenoid valve controllers, control wiring, and sequence of operation.

K. Install piping as short and direct as possible, with a minimum number of joints, elbows, and fittings.

L. Arrange piping to allow inspection and service of refrigeration equipment. Install valves and specialties in accessible locations to allow for service and inspection. Install access doors or panels as specified in Section 083113 "Access Doors and Frames" if valves or equipment requiring maintenance is concealed behind finished surfaces.

M. Install refrigerant piping in protective conduit where installed belowground.

N. Install refrigerant piping in rigid or flexible conduit in locations where exposed to mechanical injury.

O. Slope refrigerant piping as follows:
 1. Install horizontal hot-gas discharge piping with a uniform slope downward away from compressor.
 2. Install horizontal suction lines with a uniform slope downward to compressor.
 3. Install traps and double risers to entrain oil in vertical runs.
 4. Liquid lines may be installed level.

P. When brazing or soldering, remove solenoid-valve coils and sight glasses; also remove valve stems, seats, and packing, and accessible internal parts of refrigerant specialties. Do not apply heat near expansion-valve bulb.

Q. Before installation of steel refrigerant piping, clean pipe and fittings using the following procedures:
 1. Shot blast the interior of piping.
 2. Remove coarse particles of dirt and dust by drawing a clean, lintless cloth through tubing by means of a wire or electrician's tape.
 3. Draw a clean, lintless cloth saturated with trichloroethylene through the tube or pipe. Continue this procedure until cloth is not discolored by dirt.
 4. Draw a clean, lintless cloth, saturated with compressor oil, squeezed dry, through the tube or pipe to remove remaining lint. Inspect tube or pipe visually for remaining dirt and lint.
 5. Finally, draw a clean, dry, lintless cloth through the tube or pipe.
 6. Safety-relief-valve discharge piping is not required to be cleaned but is required to be open to allow unrestricted flow.

R. Install piping with adequate clearance between pipe and adjacent walls and hangers or between pipes for insulation installation.
S. Identify refrigerant piping and valves according to Section 230553 "Identification for HVAC Piping and Equipment."

T. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Section 230517 "Sleeves and Sleeve Seals for HVAC Piping."

U. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Section 230517 "Sleeves and Sleeve Seals for HVAC Piping."

V. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Section 230518 "Escutcheons for HVAC Piping."

3.4 PIPE JOINT CONSTRUCTION

A. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.

B. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.

C. Fill pipe and fittings with an inert gas (nitrogen or carbon dioxide), during brazing or welding, to prevent scale formation.

D. Soldered Joints: Construct joints according to ASTM B 828 or CDA's "Copper Tube Handbook."

E. Brazed Joints: Construct joints according to AWS's "Brazing Handbook," Chapter "Pipe and Tube."

 1. Use Type BcuP, copper-phosphorus alloy for joining copper socket fittings with copper pipe.
 2. Use Type BAg, cadmium-free silver alloy for joining copper with bronze or steel.

F. Welded Joints: Construct joints according to AWS D10.12/D10.12M.

3.5 HANGERS AND SUPPORTS

A. Hanger, support, and anchor products are specified in Section 230529 "Hangers and Supports for HVAC Piping and Equipment."

B. Install the following pipe attachments:

 1. Adjustable steel clevis hangers for individual horizontal runs less than 20 feet long.
 2. Roller hangers and spring hangers for individual horizontal runs 20 feet or longer.
 3. Pipe Roller: MSS SP-58, Type 44 for multiple horizontal piping 20 feet or longer, supported on a trapeze.
 4. Spring hangers to support vertical runs.
 5. Copper-clad hangers and supports for hangers and supports in direct contact with copper pipe.

C. Install hangers for copper tubing with the following maximum spacing and minimum rod sizes:

 1. NPS 1/2: Maximum span, 60 inches; minimum rod size, 1/4 inch.
 2. NPS 5/8: Maximum span, 60 inches; minimum rod size, 1/4 inch.
 3. NPS 1: Maximum span, 72 inches; minimum rod size, 1/4 inch.
 4. NPS 1-1/4: Maximum span, 96 inches; minimum rod size, 3/8 inch.
 5. NPS 1-1/2: Maximum span, 96 inches; minimum rod size, 3/8 inch.
 6. NPS 2: Maximum span, 96 inches; minimum rod size, 3/8 inch.
7. NPS 2-1/2: Maximum span, 108 inches; minimum rod size, 3/8 inch.
8. NPS 3: Maximum span, 10 feet; minimum rod size, 3/8 inch.
9. NPS 4: Maximum span, 12 feet; minimum rod size, 1/2 inch.

D. Support multifloor vertical runs at least at each floor.

3.6 FIELD QUALITY CONTROL

A. Perform tests and inspections and prepare test reports.

B. Tests and Inspections:
 1. Comply with ASME B31.5, Chapter VI.
 2. Test refrigerant piping, specialties, and receivers. Isolate compressor, condenser, evaporator, and safety devices from test pressure if they are not rated above the test pressure.
 3. Test high- and low-pressure side piping of each system separately at not less than the pressures indicated in Part 1 "Performance Requirements" Article.
 a. Fill system with nitrogen to the required test pressure.
 b. System shall maintain test pressure at the manifold gage throughout duration of test.
 c. Test joints and fittings with electronic leak detector or by brushing a small amount of soap and glycerin solution over joints.
 d. Remake leaking joints using new materials, and retest until satisfactory results are achieved.

3.7 SYSTEM CHARGING

A. Charge system using the following procedures:
 1. Install core in filter dryers after leak test but before evacuation.
 2. Evacuate entire refrigerant system with a vacuum pump to 500 micrometers. If vacuum holds for 12 hours, system is ready for charging.
 3. Break vacuum with refrigerant gas, allowing pressure to build up to 2 psig.
 4. Charge system with a new filter-dryer core in charging line.

3.8 ADJUSTING

A. Adjust thermostatic expansion valve to obtain proper evaporator superheat.

B. Adjust high- and low-pressure switch settings to avoid short cycling in response to fluctuating suction pressure.

C. Adjust set-point temperature of air-conditioning or chilled-water controllers to the system design temperature.

D. Perform the following adjustments before operating the refrigeration system, according to manufacturer's written instructions:
 1. Open shutoff valves in condenser water circuit.
 2. Verify that compressor oil level is correct.
 3. Open compressor suction and discharge valves.
4. Open refrigerant valves except bypass valves that are used for other purposes.
5. Check open compressor-motor alignment and verify lubrication for motors and bearings.

E. Replace core of replaceable filter dryer after system has been adjusted and after design flow rates and pressures are established.

END OF SECTION 232300
SECTION 233113 - METAL DUCTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Single-wall rectangular ducts and fittings.
 2. Single-wall round ducts and fittings.
 3. Double-wall round ducts and fittings.
 4. Sheet metal materials.
 5. Sealants and gaskets.
 6. Hangers and supports.
 7. Kitchen Hood Grease Exhaust Duct
 8. Dishwasher Exhaust Duct

B. Related Sections:
 1. Section 230593 "Testing, Adjusting, and Balancing for HVAC" for testing, adjusting, and balancing requirements for metal ducts.
 2. Section 233300 "Air Duct Accessories" for dampers, sound-control devices, duct-mounting access doors and panels, turning vanes, and flexible ducts.

1.3 PERFORMANCE REQUIREMENTS

A. Duct Design: Duct construction, including sheet metal thicknesses, seam and joint construction, reinforcements, and hangers and supports, shall comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" and performance requirements and design criteria indicated in "Duct Schedule" Article.

B. Structural Performance: Duct hangers and supports and seismic restraints shall withstand the effects of gravity and seismic loads and stresses within limits and under conditions described in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" and ASCE/SEI 7. and SMACNA's "Seismic Restraint Manual: Guidelines for Mechanical Systems."
 1. Seismic Hazard Level as stated on contract documents.

C. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of the following products:
1. Sealants and gaskets.

B. Shop Drawings:

1. Fabrication, assembly, and installation, including plans, elevations, sections, components, and attachments to other work.
2. Factory- and shop-fabricated ducts and fittings.
3. Duct layout indicating sizes, configuration, liner material, and static-pressure classes.
4. Elevation of top of ducts.
5. Dimensions of main duct runs from building grid lines.
6. Fittings.
7. Reinforcement and spacing.
8. Seam and joint construction.
9. Penetrations through fire-rated and other partitions.
10. Equipment installation based on equipment being used on Project.
11. Locations for duct accessories, including dampers, turning vanes, and access doors and panels.
12. Hangers and supports, including methods for duct and building attachment, seismic restraints, and vibration isolation.

C. Duct Design Submittal:

1. Sheet metal thicknesses.
2. Joint and seam construction and sealing.
3. Reinforcement details and spacing.
4. Materials, fabrication, assembly, and spacing of hangers and supports.

1.5 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Plans, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:

1. Duct installation in congested spaces, indicating coordination with general construction, building components, and other building services. Indicate proposed changes to duct layout.
2. Suspended ceiling components.
3. Structural members to which duct will be attached.
4. Size and location of initial access modules for acoustical tile.
5. Penetrations of smoke barriers and fire-rated construction.
6. Items penetrating finished ceiling including the following:
 a. Lighting fixtures.
 b. Air outlets and inlets.
 c. Speakers.
 d. Sprinklers.
 e. Access panels.
 f. Perimeter moldings.

B. Welding certificates.

C. Field quality-control reports.
1.6 QUALITY ASSURANCE

A. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1, Section 5 - "Systems and Equipment" and Section 7 - "Construction and System Start-up."

B. ASHRAE/IESNA Compliance: Applicable requirements in ASHRAE/IESNA 90.1, Section 6.4.4 - "HVAC System Construction and Insulation."

PART 2 - PRODUCTS

2.1 SINGLE-WALL RECTANGULAR DUCTS AND FITTINGS

A. General Fabrication Requirements: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" based on indicated static-pressure class unless otherwise indicated.

B. Transverse Joints: Select joint types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 2-1, "Rectangular Duct/Transverse Joints," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

C. Longitudinal Seams: Select seam types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 2-2, "Rectangular Duct/Longitudinal Seams," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

D. Elbows, Transitions, Offsets, Branch Connections, and Other Duct Construction: Select types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Chapter 4, "Fittings and Other Construction," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

2.2 SINGLE-WALL ROUND DUCTS AND FITTINGS

A. General Fabrication Requirements: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Chapter 3, "Round, Oval, and Flexible Duct," based on indicated static-pressure class unless otherwise indicated.

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

a. Lindab Industries, Inc.
b. McGill AirFlow LLC.
c. SEMCO Incorporated.
d. Sheet Metal Connectors, Inc.
e. Spiral Manufacturing Co., Inc.
f. Eastern Sheet Metal.
g. Hamlin Sheet Metal.
h. Turn Key Duct Systems.

B. Flat-Oval Ducts: Indicated dimensions are the duct width (major dimension) and diameter of the round sides connecting the flat portions of the duct (minor dimension).
C. Transverse Joints: Select joint types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-1, "Round Duct Transverse Joints," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

1. Transverse Joints in Ducts Larger Than 60 Inches in Diameter: Flanged.

D. Longitudinal Seams: Select seam types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-2, "Round Duct Longitudinal Seams," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

1. Fabricate round ducts larger than 90 inches in diameter with butt-welded longitudinal seams.
2. Fabricate flat-oval ducts larger than 72 inches in width (major dimension) with butt-welded longitudinal seams.

E. Tees and Laterals: Select types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-5, "90 Degree Tees and Laterals," and Figure 3-6, "Conical Tees," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

F. ‘Snap-Lock’ type duct is acceptable for concealed low pressure single wall ductwork.

2.3 DOUBLE-WALL ROUND DUCTS AND FITTINGS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

1. Lindab Inc.
2. McGill AirFlow LLC.
3. SEMCO Incorporated.
4. Sheet Metal Connectors, Inc.
5. Hamlin Sheet Metal.
6. Turn Key Duct Systems.

B. Outer Duct: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Chapter 3, "Round, Oval, and Flexible Duct," based on static-pressure class unless otherwise indicated.

1. Transverse Joints: Select joint types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-1, "Round Duct Transverse Joints," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

 a. Transverse Joints in Ducts Larger Than [60 Inches (1524 mm)] <Insert dimension> in Diameter: Flanged.

2. Longitudinal Seams: Select seam types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-2, "Round Duct Longitudinal Seams," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

 a. Fabricate round ducts larger than 90 inches (2286 mm) in diameter with butt-welded longitudinal seams.
b. Fabricate flat-oval ducts larger than 72 inches (1830 mm) in width (major dimension) with butt-welded longitudinal seams.

3. Tees and Laterals: Select types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-5, "90 Degree Tees and Laterals," and Figure 3-6, "Conical Tees," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

C. Inner Duct: Minimum 0.028-inch (0.7-mm) perforated galvanized sheet steel having 3/32-inch-diameter perforations, with overall open area of 23 percent.

D. Interstitial Insulation: Flexible elastomeric duct liner complying with ASTM C 534, Type II for sheet materials, and with NFPA 90A or NFPA 90B.
 1. Maximum Thermal Conductivity: 0.25 Btu x in./h x sq. ft. x deg F at 75 deg F mean temperature.

2.4 SHEET METAL MATERIALS

A. General Material Requirements: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" for acceptable materials, material thicknesses, and duct construction methods unless otherwise indicated. Sheet metal materials shall be free of pitting, seam marks, roller marks, stains, discolorations, and other imperfections.

B. Galvanized Sheet Steel: Comply with ASTM A 653/A 653M.
 2. Finishes for Surfaces Exposed to View: Mill phosphatized.

C. Stainless-Steel Sheets: Comply with ASTM A 480/A 480M, Type 304 or 316, as indicated in the "Duct Schedule" Article; cold rolled, annealed, sheet. Exposed surface finish shall be No. 2B, No. 2D, No. 3, or No. 4 as indicated in the "Duct Schedule" Article.

D. Reinforcement Shapes and Plates: ASTM A 36/A 36M, steel plates, shapes, and bars; black and galvanized.
 1. Where black- and galvanized-steel shapes and plates are used to reinforce aluminum ducts, isolate the different metals with butyl rubber, neoprene, or EPDM gasket materials.

E. Tie Rods: Galvanized steel, 1/4-inch minimum diameter for lengths 36 inches or less; 3/8-inch minimum diameter for lengths longer than 36 inches.

2.5 SEALANT AND GASKETS

A. General Sealant and Gasket Requirements: Surface-burning characteristics for sealants and gaskets shall be a maximum flame-spread index of 25 and a maximum smoke-developed index of 50 when tested according to UL 723; certified by an NRTL.

B. Solvent-Based Joint and Seam Sealant:
 1. Application Method: Brush on.
 2. Base: Synthetic rubber resin.
4. Solids Content: Minimum 60 percent.
5. Shore A Hardness: Minimum 60.
7. Mold and mildew resistant.
8. For indoor applications, sealant shall have a VOC content of 250 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
9. VOC: Maximum 395 g/L.
10. Sealant shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."
11. Maximum Static-Pressure Class: 10-inch wg, positive or negative.
12. Service: Indoor or outdoor.
13. Substrate: Compatible with galvanized sheet steel (both PVC coated and bare), stainless steel, or aluminum sheets.

C. Flanged Joint Sealant: Comply with ASTM C 920.
 2. Type: S.
 3. Grade: NS.
 5. Use: O.
 6. For indoor applications, sealant shall have a VOC content of 250 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 7. Sealant shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

D. Flange Gaskets: Butyl rubber, neoprene, or EPDM polymer with polyisobutylene plasticizer.

E. Round Duct Joint O-Ring Seals:
 1. Seal shall provide maximum leakage class of 3 cfm/100 sq. ft. at 1-inch wg and shall be rated for 10-inch wg static-pressure class, positive or negative.
 2. EPDM O-ring to seal in concave bead in coupling or fitting spigot.
 3. Double-lipped, EPDM O-ring seal, mechanically fastened to factory-fabricated couplings and fitting spigots.

2.6 HANGERS AND SUPPORTS

A. Hanger Rods: Electrogalvanized, all-thread rods or galvanized rods with threads painted with zinc-chromate primer after installation.

B. Strap and Rod Sizes: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Table 5-1, "Rectangular Duct Hangers Minimum Size," and Table 5-2, "Minimum Hanger Sizes for Round Duct."

C. Steel Cables for Galvanized-Steel Ducts: Galvanized steel complying with ASTM A 603.

D. Steel Cable End Connections: Cadmium-plated steel assemblies with brackets, swivel, and bolts designed for duct hanger service; with an automatic-locking and clamping device.

E. Duct Attachments: Sheet metal screws, blind rivets, or self-tapping metal screws; compatible with duct materials.
F. Trapeze and Riser Supports:

PART 3 - EXECUTION

3.1 DUCT INSTALLATION

 A. Drawing plans, schematics, and diagrams indicate general location and arrangement of duct system. Indicated duct locations, configurations, and arrangements were used to size ducts and calculate friction loss for air-handling equipment sizing and for other design considerations. Install duct systems as indicated unless deviations to layout are approved on Shop Drawings and Coordination Drawings.

 B. Install ducts according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" unless otherwise indicated.

 C. Install round ducts in maximum practical lengths.

 D. Install ducts with fewest possible joints.

 E. Install factory- or shop-fabricated fittings for changes in direction, size, and shape and for branch connections.

 F. Unless otherwise indicated, install ducts vertically and horizontally, and parallel and perpendicular to building lines.

 G. Install ducts close to walls, overhead construction, columns, and other structural and permanent enclosure elements of building.

 H. Install ducts with a clearance of 1 inch.

 I. Route ducts to avoid passing through transformer vaults and electrical equipment rooms and enclosures.

 J. Where ducts pass through non-fire-rated interior partitions and exterior walls and are exposed to view, cover the opening between the partition and duct or duct insulation with sheet metal flanges of same metal thickness as the duct. Overlap openings on four sides by at least 1-1/2 inches.

 K. Where ducts pass through fire-rated interior partitions and exterior walls, install fire dampers. Comply with requirements in Section 233300 "Air Duct Accessories" for fire and smoke dampers.

 L. Protect duct interiors from moisture, construction debris and dust, and other foreign materials.

3.2 INSTALLATION OF EXPOSED DUCTWORK

 A. Protect ducts exposed in finished spaces from being dented, scratched, or damaged.

 B. Trim duct sealants flush with metal. Create a smooth and uniform exposed bead. Do not use two-part tape sealing system.

 C. Grind welds to provide smooth surface free of burrs, sharp edges, and weld splatter. When welding stainless steel with a No. 3 or 4 finish, grind the welds flush, polish the exposed welds, and treat the welds to remove discoloration caused by welding.
D. Maintain consistency, symmetry, and uniformity in the arrangement and fabrication of fittings, hangers and supports, duct accessories, and air outlets.

E. Repair or replace damaged sections and finished work that does not comply with these requirements.

3.3 ADDITIONAL INSTALLATION REQUIREMENTS FOR COMMERCIAL KITCHEN HOOD EXHAUST DUCT

A. Install commercial kitchen hood exhaust ducts without dips and traps that may hold grease, and sloped a minimum of 2 percent to drain grease back to the hood.

B. Install fire-rated access panel assemblies at each change in direction and at maximum intervals of 12 feet in horizontal ducts, and at every floor for vertical ducts, or as indicated on Drawings. Locate access panel on top or sides of duct a minimum of 1-1/2 inches from bottom of duct.

C. Do not penetrate fire-rated assemblies except as allowed by applicable building codes and authorities having jurisdiction.

3.4 DUCT SEALING

A. Seal ducts for duct static-pressure, seal classes, and leakage classes specified in "Duct Schedule" Article according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

3.5 HANGER AND SUPPORT INSTALLATION

A. Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Chapter 5, "Hangers and Supports."

B. Building Attachments: Concrete inserts, powder-actuated fasteners, or structural-steel fasteners appropriate for construction materials to which hangers are being attached.

1. Where practical, install concrete inserts before placing concrete.
2. Install powder-actuated concrete fasteners after concrete is placed and completely cured.
3. Use powder-actuated concrete fasteners for standard-weight aggregate concretes or for slabs more than 4 inches thick.
4. Do not use powder-actuated concrete fasteners for lightweight-aggregate concretes or for slabs less than 4 inches thick.
5. Do not use powder-actuated concrete fasteners for seismic restraints.

C. Hanger Spacing: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Table 5-1 (Table 5-1M), "Rectangular Duct Hangers Minimum Size," and Table 5-2, "Minimum Hanger Sizes for Round Duct," for maximum hanger spacing; install hangers and supports within 24 inches of each elbow and within 48 inches of each branch intersection.

D. Hangers Exposed to View: Threaded rod and angle or channel supports.

E. Support vertical ducts with steel angles or channel secured to the sides of the duct with welds, bolts, sheet metal screws, or blind rivets; support at each floor and at a maximum intervals of 16 feet.

F. Install upper attachments to structures. Select and size upper attachments with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.
3.6 CONNECTIONS

A. Make connections to equipment with flexible connectors complying with Section 233300 "Air Duct Accessories."

B. Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" for branch, outlet and inlet, and terminal unit connections.

3.7 FIELD QUALITY CONTROL

A. Perform tests and inspections.

B. Duct System Cleanliness Tests:
 1. Visually inspect duct system to ensure that no visible contaminants are present.

C. Duct system will be considered defective if it does not pass tests and inspections.

D. Prepare test and inspection reports.

3.8 START UP

A. Air Balance: Comply with requirements in Section 230593 "Testing, Adjusting, and Balancing for HVAC."

3.9 DUCT SCHEDULE

A. Fabricate ducts with galvanized sheet steel except as otherwise indicated and as follows:

B. Exposed interior duct in the club suite shall be double wall. See Specification Section 230713 Duct Insulation for additional information.

C. Supply, return, and outdoor air ducts shall be as follows:
Table 1: Recommended Ductwork Seal Levels by Duct Type (2005 ASHRAE Handbook – Fundamentals)

<table>
<thead>
<tr>
<th>Duct Location</th>
<th>Supply (less than or equal to 2 in-wg)</th>
<th>Supply (greater than to 2 in-wg)</th>
<th>Exhaust</th>
<th>Return</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outdoors</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Unconditioned Spaces</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>Conditioned Spaces (concealed ductwork)</td>
<td>C</td>
<td>B</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>Conditioned Spaces (exposed ductwork)</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>B</td>
</tr>
</tbody>
</table>

Table 2: Duct Leakage Classification (2005 ASHRAE Handbook – Fundamentals)

<table>
<thead>
<tr>
<th>Duct Type</th>
<th>Sealed</th>
<th>Unsealed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metal (flexible excluded) – Round and flat oval</td>
<td>3</td>
<td>30</td>
</tr>
<tr>
<td>Metal – Rectangular (less than or equal to 2 in-wg)</td>
<td>12</td>
<td>48</td>
</tr>
<tr>
<td>Metal – Rectangular (greater than 2 in-wg)</td>
<td>6</td>
<td>48</td>
</tr>
<tr>
<td>Flexible (metal, aluminum)</td>
<td>8</td>
<td>30</td>
</tr>
</tbody>
</table>

D. Exhaust Ducts:

1. Exposed exhaust duct shall be single wall spiral.

2. Ducts Connected to Fans Exhausting Air:
 a. Pressure Class: Negative 2-inch wg.
 b. Minimum SMACNA Seal Class: A.

 a. Type 304, stainless-steel sheet.
 b. Welded seams and joints.
c. Pressure Class: Positive or negative 4-inch wg.
d. Minimum SMACNA Seal Class: Welded seams, joints, and penetrations.
e. SMACNA Leakage Class: 3.

4. Ducts Connected to Dishwasher Hoods:
 a. Type 304, stainless-steel sheet.
 b. Welded seams and flanged joints with watertight EPDM gaskets.
 c. Pressure Class: Positive or negative 3-inch wg.
 d. Minimum SMACNA Seal Class: Welded seams, joints, and penetrations.
 e. SMACNA Leakage Class: 3.

E. Intermediate Reinforcement:
 2. Stainless-Steel Ducts: Match duct material

F. Elbow Configuration:
 1. Rectangular Duct: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 4-2, "Rectangular Elbows."
 a. Radius Type RE 1 with minimum 1.5 radius-to-diameter ratio.
 b. Radius Type RE 3 with minimum 1.0 radius-to-diameter ratio and two vanes.
 2. Mitered Type RE 2 with vanes complying with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 4-3, "Vanes and Vane Runners," and Figure 4-4, "Vane Support in Elbows. "Round Duct: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-4, "Round Duct Elbows."
 a. Minimum Radius-to-Diameter Ratio and Elbow Segments: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Table 3-1, "Mitered Elbows." Elbows with less than 90-degree change of direction have proportionately fewer segments.
 1) Radius-to-Diameter Ratio: 1.5.
 b. Round Elbows, 12 Inches and Smaller in Diameter: Stamped or pleated.
 c. Round Elbows, 14 Inches and Larger in Diameter: Standing seam.

G. Branch Configuration:
 1. Rectangular Duct: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 4-6, "Branch Connection."
 a. Rectangular Main to Rectangular Branch: 45-degree entry.
 b. Rectangular Main to Round Branch: Spin in.
 2. Round and Flat Oval: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-5, "90 Degree Tees and Laterals," and Figure 3-6, "Conical Tees." Saddle taps are permitted in existing duct.
 a. Velocity (less than 2 in-wg) 1000 fpm or Lower: 90-degree tap.
 b. Velocity 1000 to 1500 fpm: Conical tap.
 c. Velocity 1500 fpm or Higher: 45-degree lateral.
END OF SECTION 233113
SECTION 233300 - AIR DUCT ACCESSORIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Backdraft and pressure relief dampers.
2. Barometric relief dampers.
4. Flange connectors.
5. Turning vanes.
6. Flexible connectors.
7. Flexible ducts.
8. Duct accessory hardware.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

1. For duct silencers, include pressure drop and dynamic insertion loss data. Include breakout noise calculations for high transmission loss casings.

1.4 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Reflected ceiling plans, drawn to scale, on which ceiling-mounted access panels and access doors required for access to duct accessories are shown and coordinated with each other, using input from Installers of the items involved.

B. Source quality-control reports.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For air duct accessories to include in operation and maintenance manuals.
PART 2 - PRODUCTS

2.1 ASSEMBLY DESCRIPTION

B. Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" for acceptable materials, material thicknesses, and duct construction methods unless otherwise indicated. Sheet metal materials shall be free of pitting, seam marks, roller marks, stains, discolorations, and other imperfections.

2.2 MATERIALS

A. Galvanized Sheet Steel: Comply with ASTM A 653/A 653M.
 2. Exposed-Surface Finish: Mill phosphatized.

B. Aluminum Sheets: Comply with ASTM B 209, Alloy 3003, Temper H14; with mill finish for concealed ducts and standard, 1-side bright finish for exposed ducts.

C. Extruded Aluminum: Comply with ASTM B 221, Alloy 6063, Temper T6.

D. Reinforcement Shapes and Plates: Galvanized-steel reinforcement where installed on galvanized sheet metal ducts; compatible materials for aluminum ducts.

E. Tie Rods: Galvanized steel, 1/4-inch minimum diameter for lengths 36 inches or less; 3/8-inch minimum diameter for lengths longer than 36 inches.

2.3 BACKDRAFT DAMPERS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 1. Air Balance Inc.; a division of Mestek, Inc.
 2. American Warming and Ventilating; a division of Mestek, Inc.
 3. Cesco Products; a division of Mestek, Inc.
 5. Lloyd Industries, Inc.
 6. Nailor Industries Inc.
 7. NCA Manufacturing, Inc.
 8. Pottorff.

B. Description: Gravity balanced.

C. Blade Action: Parallel.

D. Blade Seals: Neoprene.
E. Blade Axles:
 1. Material: Aluminum.

F. Tie Bars and Brackets: Aluminum.

G. Return Spring: Adjustable tension.

H. Bearings: synthetic pivot bushings.

I. Accessories:
 1. Adjustment device to permit setting for varying differential static pressure.
 2. Counterweights and spring-assist kits for vertical airflow installations.
 a. Sleeve Thickness: 20 gage minimum.
 b. Sleeve Length: 6 inches minimum.
 4. Screen Mounting: Rear mounted.
 5. Screen Material: Aluminum.
 6. Screen Type: Insect.
 7. 90-degree stops.

2.4 BAROMETRIC RELIEF DAMPERS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 1. Air Balance Inc.; a division of Mestek, Inc.
 2. American Warming and Ventilating; a division of Mestek, Inc.
 3. Cesco Products; a division of Mestek, Inc.
 5. Lloyd Industries, Inc.
 6. Nailor Industries Inc.
 7. NCA Manufacturing, Inc.
 8. Pottorff.

B. Suitable for horizontal or vertical mounting.

C. Blades:
 1. Aluminum construction
 3. Action: Parallel.

D. Blade Seals: Neoprene.

E. Blade Axles: Stainless steel.
F. Tie Bars and Brackets:
 1. Material: Aluminum.
 2. Rattle free with 90-degree stop.

G. Return Spring: Adjustable tension.

H. Bearings: Synthetic.

I. Accessories:
 1. Flange on intake.
 2. Adjustment device to permit setting for varying differential static pressures.

2.5 MANUAL VOLUME DAMPERS

A. Standard, Steel, Manual Volume Dampers:
 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Air Balance Inc.; a division of Mestek, Inc.
 b. American Warming and Ventilating; a division of Mestek, Inc.
 c. Flexmaster U.S.A., Inc.
 d. McGill AirFlow LLC.
 e. Nailor Industries Inc.
 f. Pottorff.
 g. Ruskin Company.
 h. Trox USA Inc.
 i. Vent Products Company, Inc.
 2. Standard leakage rating, with linkage outside airstream.
 3. Suitable for horizontal or vertical applications.
 4. Frames:
 a. Frame: Hat-shaped, 0.094-inch thick, galvanized sheet steel.
 b. Mitered and welded corners.
 c. Flanges for attaching to walls and flangeless frames for installing in ducts.
 5. Blades:
 a. Multiple or single blade.
 b. Parallel- or opposed-blade design.
 c. Stiffen damper blades for stability.
 d. Galvanized-steel, 0.064 inch thick.
 7. Bearings:
 a. Molded synthetic.
 b. Dampers in ducts with pressure classes of 3-inch wg or less shall have axles full length of damper blades and bearings at both ends of operating shaft.
8. Tie Bars and Brackets: Galvanized steel.

2.6 FLANGE CONNECTORS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

1. Ductmate Industries, Inc.
2. Nexus PDQ; Division of Shilco Holdings Inc.

B. Description: Add-on or roll-formed, factory-fabricated, slide-on transverse flange connectors, gaskets, and components.

C. Material: Galvanized steel.

D. Gage and Shape: Match connecting ductwork.

2.7 TURNING VANES

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

1. Ductmate Industries, Inc.
2. Duro Dyne Inc.
3. Elgen Manufacturing.
4. METALAIRE, Inc.
5. SEMCO Incorporated.

B. Manufactured Turning Vanes for Metal Ducts: Curved blades of galvanized sheet steel; support with bars perpendicular to blades set; set into vane runners suitable for duct mounting.

C. General Requirements: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible"; Figures 4-3, "Vanes and Vane Runners," and 4-4, "Vane Support in Elbows."

D. Vane Construction: Single wall.

2.8 FLEXIBLE CONNECTORS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

1. Ductmate Industries, Inc.
2. Duro Dyne Inc.
3. Elgen Manufacturing.
4. Ventfabrics, Inc.
B. Materials: Flame-retardant or noncombustible fabrics.

C. Coatings and Adhesives: Comply with UL 181, Class 1.

D. Metal-Edged Connectors: Factory fabricated with a fabric strip 3-1/2 inches wide attached to two strips of 2-3/4-inch- wide, 0.028-inch-thick, galvanized sheet steel. Provide metal compatible with connected ducts.

E. Outdoor System, Flexible Connector Fabric: Glass fabric double coated with weatherproof, synthetic rubber resistant to UV rays and ozone.
 1. Minimum Weight: 24 oz./sq. yd.
 2. Tensile Strength: 530 lbf/inch in the warp and 440 lbf/inch in the filling.
 3. Service Temperature: Minus 50 to plus 250 deg F.

F. Thrust Limits: Combination coil spring and elastomeric insert with spring and insert in compression, and with a load stop. Include rod and angle-iron brackets for attaching to fan discharge and duct.
 1. Frame: Steel, fabricated for connection to threaded rods and to allow for a maximum of 30 degrees of angular rod misalignment without binding or reducing isolation efficiency.
 2. Outdoor Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
 3. Minimum Additional Travel: 50 percent of the required deflection at rated load.
 4. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
 5. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
 6. Elastomeric Element: Molded, oil-resistant rubber or neoprene.
 7. Coil Spring: Factory set and field adjustable for a maximum of 1/4-inch movement at start and stop.

2.9 FLEXIBLE DUCTS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 1. Flexmaster U.S.A., Inc.
 2. McGill AirFlow LLC.

B. Noninsulated, Flexible Duct: UL 181, Class 1, 2-ply vinyl film supported by helically wound, spring-steel wire.
 1. Pressure Rating: 10-inch wg positive and 1.0-inch wg negative.
 3. Temperature Range: Minus 10 to plus 160 deg F.

C. Flexible Duct Connectors:
 1. Clamps: Stainless-steel band with cadmium-plated hex screw to tighten band with a worm-gear action in sizes 3 through 18 inches, to suit duct size.
2.10 DUCT ACCESSORY HARDWARE

A. Instrument Test Holes: Cast iron or cast aluminum to suit duct material, including screw cap and gasket. Size to allow insertion of pitot tube and other testing instruments and of length to suit duct-insulation thickness.

B. Adhesives: High strength, quick setting, neoprene based, waterproof, and resistant to gasoline and grease.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install duct accessories according to applicable details in SMACNA’s "HVAC Duct Construction Standards - Metal and Flexible" for metal ducts.

B. Install duct accessories of materials suited to duct materials; use galvanized-steel accessories in galvanized-steel and fibrous-glass ducts, stainless-steel accessories in stainless-steel ducts, and aluminum accessories in aluminum ducts.

C. Install backdraft dampers at inlet of exhaust fans or exhaust ducts as close as possible to exhaust fan unless otherwise indicated.

D. Install volume dampers at points on supply, return, and exhaust systems where branches extend from larger ducts. Where dampers are installed in ducts having duct liner, install dampers with hat channels of same depth as liner, and terminate liner with nosing at hat channel.
 1. Install steel volume dampers in steel ducts.
 2. Install aluminum volume dampers in aluminum ducts.

E. Set dampers to fully open position before testing, adjusting, and balancing.

F. Install test holes at fan inlets and outlets and elsewhere as indicated.

G. Install fire dampers according to UL listing.

H. Install flexible connectors to connect ducts to equipment.

I. For fans developing static pressures of 5-inch wg and more, cover flexible connectors with loaded vinyl sheet held in place with metal straps.

J. Connect flexible ducts to metal ducts with adhesive plus sheet metal screws.

3.2 FIELD QUALITY CONTROL

A. Tests and Inspections:
 1. Operate dampers to verify full range of movement.
 2. Inspect turning vanes for proper and secure installation.
END OF SECTION 233300
SECTION 233423 - HVAC POWER VENTILATORS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

 1. Ceiling-mounted ventilators.
 2. In-line centrifugal fans.
 3. Upblast and sidewall kitchen exhaust fans.

1.3 PERFORMANCE REQUIREMENTS

A. Project Altitude: Base fan-performance ratings on actual Project site elevations.

B. Operating Limits: Classify according to AMCA 99.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product indicated. Include rated capacities, operating characteristics, and furnished specialties and accessories. Also include the following:

 1. Certified fan performance curves with system operating conditions indicated.
 2. Certified fan sound-power ratings.
 3. Motor ratings and electrical characteristics, plus motor and electrical accessories.
 4. Material thickness and finishes, including color charts.
 5. Dampers, including housings, linkages, and operators.
 6. Fan speed controllers.

B. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.

 1. Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 2. Wiring Diagrams: For power, signal, and control wiring.

C. Professional Design Services and Certifications by Contractor Submittal: For unit hangars and supports indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

 1. Design Calculations: Calculate requirements for selecting vibration isolators and seismic restraints and for designing vibration isolation bases.
1.5 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Reflected ceiling plans and other details, drawn to scale, on which the following items are shown and coordinated with each other, using input from Installers of the items involved:

1. Roof framing and support members relative to duct penetrations.
2. Ceiling suspension assembly members.
3. Size and location of initial access modules for acoustical tile.
4. Ceiling-mounted items including light fixtures, diffusers, grilles, speakers, sprinklers, access panels, and special moldings.

B. Field quality-control reports.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For power ventilators to include in emergency, operation, and maintenance manuals.

1.7 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Belts: One set(s) for each belt-driven unit.

1.8 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. AMCA Compliance: Fans shall have AMCA-Certified performance ratings and shall bear the AMCA-Certified Ratings Seal.

C. UL Standards: Power ventilators shall comply with UL 705. Power ventilators for use for restaurant kitchen exhaust shall also comply with UL 762.

1.9 COORDINATION

A. Coordinate size and location of structural-steel support members.

B. Coordinate sizes and locations of concrete bases with actual equipment provided.

C. Coordinate sizes and locations of roof curbs, equipment supports, and roof penetrations with actual equipment provided.
PART 2 - PRODUCTS

2.1 CEILING-MOUNTED VENTILATORS

A. **Basis-of-Design Product:** Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 1. Breidert Air Products.
 2. Broan-NuTone LLC.
 4. Loren Cook Company.
 5. PennBarry.
 6. Or equal

B. **Housing:** Steel, lined with acoustical insulation.

C. **Fan Wheel:** Centrifugal wheels directly mounted on motor shaft. Fan shrouds, motor, and fan wheel shall be removable for service.

D. **Grille:** Plastic or Painted aluminum, louvered grille with flange on intake and thumbscrew attachment to fan housing.

E. **Electrical Requirements:** Junction box for electrical connection on housing and receptacle for motor plug-in.

F. **Accessories:**
 1. Variable-Speed Controller: Solid-state control to reduce speed from 100 to less than 50 percent.
 3. Time-Delay Switch: Assembly with single-pole rocker switch, timer, and cover plate.
 4. Motion Sensor: Motion detector with adjustable shutoff timer.
 5. Ceiling Radiation Damper: Fire-rated assembly with ceramic blanket, stainless-steel springs, and fusible link.
 6. Filter: Washable aluminum to fit between fan and grille.
 8. Manufacturer's standard roof jack or wall cap, and transition fittings.

2.2 IN-LINE CENTRIFUGAL FANS

A. **Basis-of-Design Product:** Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 1. Breidert Air Products.
 2. Greenheck Fan Corporation.
 3. Loren Cook Company.
 4. PennBarry.
 5. Or equal

B. **Housing:** Split, spun aluminum with aluminum straightening vanes, inlet and outlet flanges, and support bracket adaptable to floor, side wall, or ceiling mounting.

C. **Direct-Drive Units:** Motor mounted in airstream, factory wired to disconnect switch located on outside of fan housing; with wheel, inlet cone, and motor on swing-out service door.
D. Belt-Driven Units: Motor mounted on adjustable base, with adjustable sheaves, enclosure around belts within fan housing, and lubricating tubes from fan bearings extended to outside of fan housing.

E. Fan Wheels: Aluminum, airfoil blades welded to aluminum hub.

F. Accessories:
 1. Variable-Speed Controller: Solid-state control to reduce speed from 100 to less than 50 percent.
 2. Volume-Control Damper: Manually operated with quadrant lock, located in fan outlet.
 3. Companion Flanges: For inlet and outlet duct connections.
 4. Fan Guards: 1/2- by 1-inch mesh of galvanized steel in removable frame. Provide guard for inlet or outlet for units not connected to ductwork.
 5. Motor and Drive Cover (Belt Guard): Epoxy-coated steel.

2.3 UPBLAST AND SIDEWALL KITCHEN EXHAUST FANS.

A. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 2. Loren Cook Company.
 3. PennBarry.
 4. Or equal

B. Housing: Removable, spun-aluminum, dome top and outlet baffle; square, one-piece, aluminum base with venturi inlet cone.
 1. Upblast Units: Provide spun-aluminum discharge baffle to direct discharge air upward, with rain and snow drains and grease collector.
 2. Hinged Subbase: Galvanized-steel hinged arrangement permitting service and maintenance.

C. Fan Wheels: Aluminum hub and wheel with backward-inclined blades.

D. UL 762 rated

E. Belt Drives:
 1. Resiliently mounted to housing.
 2. Fan Shaft: Turned, ground, and polished steel; keyed to wheel hub.
 5. Fan and motor isolated from exhaust airstream.

F. Accessories:
 1. Variable-Speed Controller: Solid-state control to reduce speed from 100 to less than 50 percent.
 2. Disconnect Switch: Nonfusible type, with thermal-overload protection mounted outside fan housing, factory wired through an internal aluminum conduit.
 3. Manufacturer provided wall mounting kit for sidewall applications.

G. Roof Curbs: Galvanized steel; mitered and welded corners; 1-1/2-inch- thick, rigid, fiberglass insulation adhered to inside walls; and 1-1/2-inch wood nailer. Size as required to suit roof opening and fan base.
 1. Overall Height: minimum 16 inches, field verify height.
 2. Pitch Mounting: Manufacture curb for roof slope.
4. Mounting Pedestal: Galvanized steel with removable access panel.
5. Vented Curb: Unlined with louvered vents in vertical sides.

2.4 MOTORS

A. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements for motors specified in Section 230513 "Common Motor Requirements for HVAC Equipment."

1. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.

B. Enclosure Type: Totally enclosed, fan cooled.

2.5 SOURCE QUALITY CONTROL

A. Certify sound-power level ratings according to AMCA 301, "Methods for Calculating Fan Sound Ratings from Laboratory Test Data." Factory test fans according to AMCA 300, "Reverberant Room Method for Sound Testing of Fans." Label fans with the AMCA-Certified Ratings Seal.

B. Certify fan performance ratings, including flow rate, pressure, power, air density, speed of rotation, and efficiency by factory tests according to AMCA 210, "Laboratory Methods of Testing Fans for Aerodynamic Performance Rating." Label fans with the AMCA-Certified Ratings Seal.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install power ventilators level and plumb.

B. Equipment Mounting:
 1. Comply with requirements for vibration isolation and seismic control devices specified in Section 230548 "Vibration and Seismic Controls for HVAC."

C. Support suspended units from structure using threaded steel rods and elastomeric hangers, spring hangers, or spring hangers with vertical-limit stops having a static deflection of 1 inch. Vibration-control devices are specified in Section 230548 "Vibration and Seismic Controls for HVAC."

D. Install units with clearances for service and maintenance.

E. Label units according to requirements specified in Section 230553 "Identification for HVAC Equipment."

3.2 CONNECTIONS

A. Drawings indicate general arrangement of ducts and duct accessories. Make final duct connections with flexible connectors. Flexible connectors are specified in Section 233300 "Air Duct Accessories."

B. Install ducts adjacent to power ventilators to allow service and maintenance.
C. Ground equipment according to Section 260526 "Grounding and Bonding for Electrical Systems."

D. Connect wiring according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

3.3 FIELD QUALITY CONTROL

A. Perform tests and inspections.

1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

B. Tests and Inspections:

1. Verify that shipping, blocking, and bracing are removed.
2. Verify that unit is secure on mountings and supporting devices and that connections to ducts and electrical components are complete. Verify that proper thermal-overload protection is installed in motors, starters, and disconnect switches.
3. Verify that cleaning and adjusting are complete.
4. Disconnect fan drive from motor, verify proper motor rotation direction, and verify fan wheel free rotation and smooth bearing operation. Reconnect fan drive system, align and adjust belts, and install belt guards.
5. Adjust belt tension.
6. Adjust damper linkages for proper damper operation.
7. Verify lubrication for bearings and other moving parts.
8. Verify that manual and automatic volume control and fire and smoke dampers in connected ductwork systems are in fully open position.
9. Disable automatic temperature-control operators, energize motor and adjust fan to indicated rpm, and measure and record motor voltage and amperage.
10. Shut unit down and reconnect automatic temperature-control operators.
11. Remove and replace malfunctioning units and retest as specified above.

C. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

D. Prepare test and inspection reports.

3.4 ADJUSTING

A. Adjust damper linkages for proper damper operation.

B. Adjust belt tension.

C. Comply with requirements in Section 230593 "Testing, Adjusting, and Balancing for HVAC" for testing, adjusting, and balancing procedures.

D. Replace fan and motor pulleys as required to achieve design airflow.

E. Lubricate bearings.

END OF SECTION 233423
SECTION 233713 - DIFFUSERS, REGISTERS, AND GRILLES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Round ceiling diffusers.
 2. Rectangular and square ceiling diffusers.
 3. Perforated diffusers.
 4. Louver face diffusers.
 5. Linear floor diffuser plenums.
 6. Linear bar grilles.
 7. Louvers.

B. Related Sections:
 1. Section 089116 "Operable Wall Louvers" and Section 089119 "Fixed Louvers" for fixed and adjustable louvers and wall vents, whether or not they are connected to ducts.
 2. Section 233300 "Air Duct Accessories" for fire and smoke dampers and volume-control dampers not integral to diffusers, registers, and grilles.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated, include the following:
 1. Data Sheet: Indicate materials of construction, finish, and mounting details; and performance data including throw and drop, static-pressure drop, and noise ratings.
 2. Diffuser, Register, and Grille Schedule: Indicate drawing designation, room location, quantity, model number, size, and accessories furnished.

1.4 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Reflected ceiling plans, drawn to scale, on which the following items are shown and coordinated with each other, using input from Installers of the items involved:
 1. Ceiling suspension assembly members.
 2. Method of attaching hangers to building structure.
 3. Size and location of initial access modules for acoustical tile.
 4. Ceiling-mounted items including lighting fixtures, diffusers, grilles, speakers, sprinklers, access panels, and special moldings.
 5. Duct access panels.
B. Source quality-control reports.

PART 2 - PRODUCTS

2.1 Basis of Design Product: Subject to compliance with requirements, provide product indicated on drawings or comparable product by one of the following:

A. Metalaire,
B. Nailor
C. Price
D. Titus
E. Or Equal

2.2 See drawings for additional information of Basis of Design Products.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas where diffusers, registers, and grilles are to be installed for compliance with requirements for installation tolerances and other conditions affecting performance of equipment.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Install diffusers, registers, and grilles level and plumb.

B. Ceiling-Mounted Outlets and Inlets: Drawings indicate general arrangement of ducts, fittings, and accessories. Air outlet and inlet locations have been indicated to achieve design requirements for air volume, noise criteria, airflow pattern, throw, and pressure drop. Make final locations where indicated, as much as practical. For units installed in lay-in ceiling panels, locate units in the center of panel. Where architectural features or other items conflict with installation, notify Architect for a determination of final location.

C. Install diffusers, registers, and grilles with airtight connections to ducts and to allow service and maintenance of dampers, air extractors, and fire dampers.

3.3 ADJUSTING

A. After installation, adjust diffusers, registers, and grilles to air patterns indicated, or as directed, before starting air balancing.

END OF SECTION 233713
SECTION 233723 - HVAC GRAVITY VENTILATORS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Roof hoods.

1.3 PERFORMANCE REQUIREMENTS

A. Professional Design Services and Certifications by Contractor: Design ventilators, including comprehensive engineering analysis by a qualified professional engineer, using structural and seismic performance requirements and design criteria indicated.

B. Structural Performance: Ventilators shall withstand the effects of gravity loads and the following loads and stresses within limits and under conditions indicated without permanent deformation of ventilator components, noise or metal fatigue caused by ventilator blade rattle or flutter, or permanent damage to fasteners and anchors. Wind pressures shall be considered to act normal to the face of the building.

1. Wind Loads: Determine loads based on pressures as indicated on Drawings.

C. Seismic Performance: Ventilators, including attachments to other construction, shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.

1. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified and the unit will be fully operational after the seismic event."

D. Thermal Movements: Allow for thermal movements from ambient and surface temperature changes, without buckling, opening of joints, overstressing of components, failure of connections, or other detrimental effects.

1. Temperature Change (Range): 120 deg F, ambient; 180 deg F, material surfaces.

E. Water Entrainment: Limit water penetration through unit to comply with ASHRAE 62.1.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product indicated. Shop Drawings: For gravity ventilators. Include plans, elevations, sections, details, ventilator attachments to curbs, and curb attachments to roof structure.

1. Show weep paths, gaskets, flashing, sealant, and other means of preventing water intrusion.
B. Professional Design Services and Certifications by Contractor Submittal: For shop-fabricated ventilators indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

1. Detail fabrication and assembly of shop-fabricated ventilators.

1.5 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Roof framing plans and other details, drawn to scale, on which the following items are shown and coordinated with each other, based on input from installers of the items involved:

1. Structural members to which roof curbs and ventilators will be attached.
2. Sizes and locations of roof openings.

B. Seismic Qualification Certificates: For ventilators, accessories, and components, from manufacturer.

1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

C. Welding certificates.

1.6 QUALITY ASSURANCE

A. Welding Qualifications: Qualify procedures and personnel according to the following:

1. AWS D1.2/D1.2M, "Structural Welding Code - Aluminum."
2. AWS D1.3, "Structural Welding Code - Sheet Steel."

1.7 COORDINATION

A. Coordinate sizes and locations of roof curbs, equipment supports, and roof penetrations with actual equipment provided.

PART 2 - PRODUCTS

2.1 MATERIALS

A. Aluminum Extrusions: ASTM B 221, Alloy 6063-T5 or T-52.

B. Aluminum Sheet: ASTM B 209, Alloy 3003 or 5005 with temper as required for forming or as otherwise recommended by metal producer for required finish.

C. Fasteners: Same basic metal and alloy as fastened metal or 300 Series stainless steel unless otherwise indicated. Do not use metals that are incompatible with joined materials.
1. Use types and sizes to suit unit installation conditions.
2. Use hex-head or Phillips pan-head screws for exposed fasteners unless otherwise indicated.

E. Post-Installed Fasteners for Concrete and Masonry: Torque-controlled expansion anchors made from stainless-steel components, with capability to sustain without failure a load equal to 4 times the loads imposed for concrete, or 6 times the load imposed for masonry, as determined by testing per ASTM E 488, conducted by a qualified independent testing agency.

F. Bituminous Paint: Cold-applied asphalt emulsion complying with ASTM D 1187.

2.2 FABRICATION, GENERAL

A. Factory or shop fabricate gravity ventilators to minimize field splicing and assembly. Disassemble units to the minimum extent as necessary for shipping and handling. Clearly mark units for reassembly and coordinated installation.

B. Fabricate frames, including integral bases, to fit in openings of sizes indicated, with allowances made for fabrication and installation tolerances, adjoining material tolerances, and perimeter sealant joints.

C. Fabricate units with closely fitted joints and exposed connections accurately located and secured.

D. Fabricate supports, anchorages, and accessories required for complete assembly.

E. Perform shop welding by AWS-certified procedures and personnel.

2.3 ROOF HOODS

A. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:

2. Carnes.
4. Loren Cook Company.
5. PennBarry.
6. Or equal

B. Factory or shop fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figures 6-6 and 6-7.

C. Materials: Aluminum sheet, minimum 0.063-inch-thick base and 0.050-inch-thick hood; suitably reinforced.

D. Roof Curbs: Galvanized-steel sheet; with mitered and welded corners; 1-1/2-inch-thick, rigid fiberglass insulation adhered to inside walls; and 1-1/2-inch wood nailer. Size as required to fit roof opening and ventilator base.

E. Bird Screening: Aluminum, 1/2-inch-square mesh, 0.063-inch wire.

F. Insect Screening: Aluminum, 18-by-16 mesh, 0.012-inch wire.
PART 3 - EXECUTION

3.1 INSTALLATION

A. Install gravity ventilators level, plumb, and at indicated alignment with adjacent work.
B. Install goosenecks on curb base.
C. Install gravity ventilators with clearances for service and maintenance.
D. Install perimeter reveals and openings of uniform width for sealants and joint fillers, as indicated.
E. Install concealed gaskets, flashings, joint fillers, and insulation as installation progresses.
F. Label gravity ventilators according to requirements specified in Section 230553 "Identification for HVAC Piping and Equipment."
G. Protect galvanized and nonferrous-metal surfaces from corrosion or galvanic action by applying a heavy coating of bituminous paint on surfaces that will be in contact with concrete, masonry, or dissimilar metals.
H. Repair finishes damaged by cutting, welding, soldering, and grinding. Restore finishes so no evidence remains of corrective work. Return items that cannot be refinished in the field to the factory, make required alterations, and refinish entire unit or provide new units.

3.2 CONNECTIONS

A. Duct installation and connection requirements are specified in Section 233113 "Metal Ducts" and Section 233116 "Nonmetal Ducts." Drawings indicate general arrangement of ducts and duct accessories.

3.3 ADJUSTING

A. Adjust damper linkages for proper damper operation.

END OF SECTION 233723
SECTIO N 233813 - COMMERCIAL-KITCHEN HOODS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. This Section includes Type I commercial kitchen hoods.

1.3 DEFINITIONS
 A. Listed Hood: A hood, factory fabricated and tested for compliance with UL 710 by a testing agency acceptable to authorities having jurisdiction.
 B. Standard Hood: A hood, usually field fabricated, that complies with design, construction, and performance criteria of applicable national and local codes.
 C. Type I Hood: A hood designed for grease exhaust applications.

1.4 ACTION SUBMITTALS
 A. Product Data: For the following:
 2. Filters/baffles.
 3. Fire-suppression systems.
 4. Lighting fixtures.
 B. Shop Drawings: Signed and sealed by a qualified professional engineer.
 1. Shop Drawing Scale: 1/4 inch = 1 foot.
 2. Show plan view, elevation view, sections, roughing-in dimensions, service requirements, duct connection sizes, and attachments to other work.
 3. Show cooking equipment plan and elevation to confirm minimum code-required overhang.
 4. Indicate performance, exhaust and makeup air airflow, and pressure loss at actual Project-site elevation.
 5. Show control cabinets.
 7. Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 8. Design Calculations: Calculate requirements for selecting seismic restraints.
 10. Piping Diagrams: Detail fire-suppression piping and components and differentiate between manufacturer-installed and field-installed piping. Include roughing-in requirements for drain
connections. Show cooking equipment plan and elevation to illustrate fire-suppression nozzle locations.

a. Piping Diagram Scale: 1/4 inch = 1 foot.

1.5 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Reflected ceiling plans, drawn to scale, on which the following items are shown and coordinated with each other, based on input from installers of the items involved:

1. Coordination Drawing Scale: 1/4 inch = 1 foot.
2. Suspended ceiling assembly components.
3. Structural members to which equipment will be attached.
4. Roof framing and support members for duct penetrations.
5. Items penetrating finished ceiling, including the following:

a. Lighting fixtures.
b. Air outlets and inlets.
c. Speakers.
d. Sprinklers.
e. Access panels.
f. Moldings on hoods and accessory equipment.

B. Welding certificates.

C. Manufacturer Seismic Qualification Certification: Submit certification that commercial kitchen hoods, accessories, and components will withstand seismic forces defined in Section 230548 "Vibration and Seismic Controls for HVAC." Include the following:

1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.

a. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified."
b. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified and the unit will be fully operational after the seismic event."

2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

D. Field quality-control test reports.

1.6 QUALITY ASSURANCE

A. Engineering Responsibility: Preparation of Shop Drawings and comprehensive engineering analysis by a qualified professional engineer.

C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

D. Preinstallation Conference: Conduct conference at Project site to comply with requirements in Section 013100 "Project Management and Coordination."

1.7 COORDINATION

A. Coordinate equipment layout and installation with adjacent Work, including lighting fixtures, HVAC equipment, plumbing, and fire-suppression system components.

1.8 EXTRA MATERIALS

A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Furnish one complete set of grease filters/baffles.

PART 2 - PRODUCTS

2.1 HOOD MATERIALS

A. Stainless-Steel Sheet: ASTM A 666, Type 304.

1. Minimum Thickness: 0.050 inch.
2. Finish: Comply with SSINA's "Finishes for Stainless Steel" for recommendations for applying and designating finishes.
 a. Finish shall be free from tool and die marks and stretch lines and shall have uniform, directionally textured, polished finish indicated, free of cross scratches. Grain shall run with long dimension of each piece.
3. Concealed Stainless-Steel Surfaces: ASTM A 480/A 480M, No. 2B finish (bright, cold-rolled, unpolished finish).
4. Exposed Surfaces: ASTM A 480/A 480M, No. 4 finish (directional satin).
5. When polishing is completed, passivate and rinse surfaces. Remove embedded foreign matter and leave surfaces chemically clean.

B. Sealant: ASTM C 920; Type S, Grade NS, Class 25, Use NT. Elastomeric sealant shall be NSF certified for commercial kitchen hood application. Sealants, when cured and washed, shall comply with requirements in 21 CFR, Section 177.2600, for use in areas that come in contact with food.

1. Color: As selected by Architect from manufacturer’s full range.
2. Backer Rod: Closed-cell polyethylene, in diameter larger than joint width.

C. Sound Dampening: NSF-certified, nonabsorbent, hard-drying, sound-deadening compound for permanent adhesion to metal in minimum 1/8-inch thickness that does not chip, flake, or blister.
D. Gaskets: NSF certified for end-use application indicated; of resilient rubber, neoprene, or PVC that is nontoxic, stable, odorless, nonabsorbent, and unaffected by exposure to foods and cleaning compounds, and that passes testing according to UL 710.

2.2 GENERAL HOOD FABRICATION REQUIREMENTS

A. Welding: Use welding rod of same composition as metal being welded. Use methods that minimize distortion and develop strength and corrosion resistance of base metal. Make ductile welds free of mechanical imperfections such as gas holes, pits, or cracks.

1. Welded Butt Joints: Full-penetration welds for full-joint length. Make joints flat, continuous, and homogenous with sheet metal without relying on straps under seams, filling in with solder, or spot welding.
2. Grind exposed welded joints flush with adjoining material and polish to match adjoining surfaces.
3. Where fasteners are welded to underside of equipment, finish reverse side of weld smooth and flush.

B. For metal butt joints, comply with SMACNA's "Kitchen Ventilation Systems & Food Service Equipment Guidelines."

C. Where stainless steel is joined to a dissimilar metal, use stainless-steel welding material or fastening devices.

D. Form metal with break bends that are not flaky, scaly, or cracked in appearance; where breaks mar uniform surface appearance of material, remove marks by grinding, polishing, and finishing.

E. Sheared Metal Edges: Finish free of burrs, fins, and irregular projections.

F. In food zones, as defined in NSF, fabricate surfaces free from exposed fasteners.

G. Cap exposed fastener threads, including those inside cabinets, with stainless-steel lock washers and stainless-steel cap (acorn) nuts.

H. Fabricate pipe slots on equipment with turned-up edges sized to accommodate service and utility lines and mechanical connections.

I. Fabricate enclosures, including panels, housings, and skirts, to conceal service lines, operating components, and mechanical and electrical devices including those inside cabinets, unless otherwise indicated.

K. Fabricate equipment edges and backsplashes according to SMACNA's "Kitchen Ventilation Systems & Food Service Equipment Guidelines."

L. Fabricate enclosure panels to ceiling and wall as follows:

1. Fabricate panels on all exposed side(s) with same material as hood, and extend from ceiling to top of hood canopy and from canopy to wall.
2. Wall Offset Spacer: Minimum of 3 inches.

2.3 TYPE I EXHAUST HOOD FABRICATION

A. Basis-of-Design Product: Subject to compliance with requirements, provide the product indicated on Drawings or a comparable product by one of the following:
 2. Gaylord Industries, Inc.
 4. Or equal

B. Weld all joints exposed to grease with continuous welds, and make filters/baffles or grease extractors and makeup air diffusers easily accessible for cleaning.
 1. Fabricate hoods according to NSF 2, "Food Equipment."
 2. Hoods shall be listed and labeled, according to UL 710, by a testing agency acceptable to authorities having jurisdiction.
 3. Hoods shall be designed, fabricated, and installed according to NFPA 96.
 4. Include access panels as required for access to fire dampers and fusible links.
 5. Duct Collars: Minimum 0.0598-inch-thick steel at least 3 inches long, continuously welded to top of hood and at corners. Fabricate a collar with a 0.5-inch-wide duct flange.
 6. Duct-Collar Fire Dampers: Collar and damper shall comply with UL 710 testing and listing required for the entire hood.
 a. Collar: Minimum 0.0598-inch-thick stainless steel, at least 3 inches long, continuously welded to top of hood and at corners. Fabricate a collar with a minimum 0.5-inch-wide duct flange.
 b. Blades: Minimum 0.1046-inch-thick stainless steel, counterbalanced to remain closed after actuation.
 d. Fusible Link: Replaceable, 212 deg F rated.

C. Hood Configuration: Exhaust only.
 1. Makeup air shall be introduced through laminar-flow-type, perforated metal diffusers mounted in the ceiling in front of hood canopy. Furnish laminar-flow-type diffusers with baked white enamel finish and volume-control dampers.

D. Hood Style: Wall-mounted canopy.

E. Filters/Baffles: Removable, stainless-steel. Fabricate stainless steel for filter frame and removable collection cup and pitched trough. Exposed surfaces shall be pitched to drain to collection cup. Filters/baffles shall be tested according to UL 1046, "Grease Filters for Exhaust Ducts," by an NRTL acceptable to authorities having jurisdiction.

F. Lighting Fixtures: Recessed LED fixtures and lamps with lenses sealed vaptortight. Wiring shall be installed in conduit on hood exterior. Number and location of fixtures shall provide a minimum of 50 fc at 30 inches above finished floor.
 1. Light switches shall be mounted on front panel of hood canopy, on wall adjacent to hood, or in hood control panel.
 2. Lighting Fixtures: LED complying with UL 1598.
G. Hood Controls: Hood or Wall-mounting control cabinet, fabricated of stainless steel.

1. Exhaust Fan: On-off switches shall start and stop the exhaust fan. Interlock exhaust fan with makeup air supply fan to operate simultaneously. Interlock exhaust fan with fire-suppression system to operate fan(s) during fire-suppression-agent release and to remain in operation until manually stopped. Include red pilot light to indicate fan operation. Motor starters shall comply with Section 262913 "Enclosed Controllers."

2. Variable-frequency controllers shall be used with the make-up air and exhaust fans.

3. High-Temperature Control: Alarm shall sound and cooking equipment shall shut down before hood discharge temperature rises to actuation temperature of fire-suppression system.

2.4 WET-CHEMICAL FIRE-SUPPRESSION SYSTEM

A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

1. Ansul Incorporated; a Tyco International Ltd. Company.
4. Pyro Chem.
5. Or equal

B. Description: Engineered distribution piping designed for automatic detection and release or manual release of fire-suppression agent by hood operator. Fire-suppression system shall be listed and labeled for complying with NFPA 17A, "Wet Chemical Extinguishing Systems," by a qualified testing agency acceptable to authorities having jurisdiction.

3. Piping, fusible links and release mechanism, tank containing the suppression agent, and controls shall be factory installed. Controls shall be in stainless-steel control cabinet mounted on hood or wall. Furnish manual pull station for wall mounting. Exposed piping shall be covered with chrome-plated aluminum tubing. Exposed fittings shall be chrome plated.
5. Furnish electric-operated gas shutoff valve; refer to Section 221006 "Facility Natural-Gas Piping."
6. Furnish electric-operated gas shutoff valve with clearly marked open and closed indicator for field installation.
7. Fire-suppression system controls shall be integrated with controls for fans, lights, and fuel supply and located in a single cabinet for each group of hoods immediately adjacent.
8. Wiring shall have color-coded, numbered terminal blocks and grounding bar. Spare terminals for fire alarm, optional wiring to start fan with fire alarm, red pilot light to indicate fan operation, and control switches shall all be factory wired in control cabinet with relays or starters. Include spare terminals for fire alarm, and wiring to start fan with fire alarm.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance.
B. Examine roughing-in for piping systems to verify actual locations of piping connections before equipment installation.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Complete field assembly of hoods where required.
 1. Make closed butt and contact joints that do not require filler.
 2. Grind field welds on stainless-steel equipment smooth, and polish to match adjacent finish. Comply with welding requirements in Part 2 "General Hood Fabrication Requirements" Article.

B. Install hoods and associated services with clearances and access for maintaining, cleaning, and servicing hoods, filters/baffles, grease extractor, and fire-suppression systems according to manufacturer's written instructions and requirements of authorities having jurisdiction.

C. Make cutouts in hoods where required to run service lines and to make final connections, and seal openings according to UL 1978.

D. Securely anchor and attach items and accessories to walls, floors, or bases with stainless-steel fasteners, unless otherwise indicated.

E. Install hoods to operate free from vibration.

G. Install trim strips and similar items requiring fasteners in a bed of sealant. Fasten with stainless-steel fasteners at 48 inches o.c. maximum.

H. Install sealant in joints between equipment and abutting surfaces with continuous joint backing, unless otherwise indicated. Provide airtight, watertight, vermin-proof, sanitary joints.

I. Install lamps, with maximum recommended wattage, in equipment with integral lighting.

J. Set initial temperatures, and calibrate sensors.

K. Set field-adjustable switches.

3.3 CONNECTIONS

A. Install piping and ductwork with clearance to allow service and maintenance.

B. Connect ducts according to requirements in Section 233300 "Air Duct Accessories." Weld exhaust-duct connections with continuous liquidtight joint.

C. Install fire-suppression piping for remote-mounted suppression systems according to NFPA 17A, "Wet Chemical Extinguishing Systems."
3.4 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to perform tests and inspections and prepare test reports.

B. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections. Report results in writing.

C. Perform tests and inspections.
 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

D. Tests and Inspections:
 1. Test each equipment item for proper operation. Repair or replace equipment that is defective, including units that operate below required capacity or that operate with excessive noise or vibration.
 2. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
 3. Test water, drain, gas, and liquid-carrying components for leaks. Repair or replace leaking components.
 4. Perform hood performance tests required by authorities having jurisdiction.
 5. Perform fire-suppression system performance tests required by authorities having jurisdiction.

E. Prepare test and inspection reports.

3.5 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain commercial kitchen hoods. Refer to Section 017900 "Demonstration and Training."

END OF SECTION 233813
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes packaged, outdoor, central-station air-handling units (rooftop units) with the following components and accessories:

1. Direct-expansion cooling.
3. Hot-gas reheat.
4. Electric-heating coils.
5. Gas furnace.
6. Economizer outdoor- and return-air damper section.
7. Integral, space temperature controls.
8. Roof curbs.

1.3 DEFINITIONS

A. DDC: Direct-digital controls.
B. ECM: Electrically commutated motor.
C. Outdoor-Air Refrigerant Coil: Refrigerant coil in the outdoor-air stream to reject heat during cooling operations and to absorb heat during heating operations. "Outdoor air" is defined as the air outside the building or taken from outdoors and not previously circulated through the system.
D. Outdoor-Air Refrigerant-Coil Fan: The outdoor-air refrigerant-coil fan in RTUs. "Outdoor air" is defined as the air outside the building or taken from outdoors and not previously circulated through the system.
E. RTU: Rooftop unit. As used in this Section, this abbreviation means packaged, outdoor, central-station air-handling units. This abbreviation is used regardless of whether the unit is mounted on the roof or on a concrete base on ground.
F. Supply-Air Fan: The fan providing supply air to conditioned space. "Supply air" is defined as the air entering a space from air-conditioning, heating, or ventilating apparatus.
G. Supply-Air Refrigerant Coil: Refrigerant coil in the supply-air stream to absorb heat (provide cooling) during cooling operations and to reject heat (provide heating) during heating operations. "Supply air" is defined as the air entering a space from air-conditioning, heating, or ventilating apparatus.
1.4 PERFORMANCE REQUIREMENTS

A. Professional Design Services and Certifications by Contractor: Design RTU supports to comply with wind and seismic performance requirements, including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.

B. Wind-Restraint Performance:
 1. Minimum 10 lb/sq. ft multiplied by the maximum area of the mechanical component projected on a vertical plane that is normal to the wind direction, and 45 degrees either side of normal.

C. Seismic Performance: RTUs shall withstand the effects of earthquake motions determined according to SEI/ASCE 7.
 1. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified."

1.5 ACTION SUBMITTALS

A. Product Data: Include manufacturer's technical data for each RTU, including rated capacities, dimensions, required clearances, characteristics, furnished specialties, and accessories.

B. Shop Drawings: Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.

C. Professional Design Services and Certification by Contractor Submittal: For RTU supports indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
 1. Design Calculations: Calculate requirements for selecting vibration isolators and seismic restraints and for designing vibration isolation bases.
 2. Detail mounting, securing, and flashing of roof curb to roof structure. Indicate coordinating requirements with roof membrane system.
 3. Wind and Seismic-Restraint Details: Detail fabrication and attachment of wind and seismic restraints and snubbers. Show anchorage details and indicate quantity, diameter, and depth of penetration of anchors.

1.6 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Plans and other details, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 1. Structural members to which RTUs will be attached.
 2. Roof openings
 3. Roof curbs and flashing.

B. Manufacturer Wind Loading Qualification Certification: Submit certification that specified equipment will withstand wind forces identified in "Performance Requirements" Article and in Section 230548 "Vibration and Seismic Controls for HVAC."
 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculations.
2. Dimensioned Outline Drawings of Equipment Unit: Identify center of wind force and locate and describe mounting and anchorage provisions.
3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

C. Manufacturer Seismic Qualification Certification: Submit certification that RTUs, accessories, and components will withstand seismic forces defined in "Performance Requirements" Article and in Section 230548 "Vibration and Seismic Controls for HVAC."
 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

D. Field quality-control test reports.

E. Warranty: Special warranty specified in this Section.

1.7 CLOSEOUT SUBMITTALS
A. Operation and Maintenance Data: For RTUs to include in emergency, operation, and maintenance manuals.

1.8 MAINTENANCE MATERIAL SUBMITTALS
A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Fan Belts: One set for each belt-driven fan.
 2. Filters: One set of filters for each unit.

1.9 QUALITY ASSURANCE
A. ARI Compliance:
 1. Comply with ARI 203/110 and ARI 303/110 for testing and rating energy efficiencies for RTUs.
 2. Comply with ARI 270 for testing and rating sound performance for RTUs.

B. ASHRAE Compliance:
 1. Comply with ASHRAE 15 for refrigeration system safety.
 2. Comply with ASHRAE 33 for methods of testing cooling and heating coils.
 3. Comply with applicable requirements in ASHRAE 62.1, Section 5 - "Systems and Equipment" and Section 7 - "Construction and Startup."

C. ASHRAE/IESNA 90.1 Compliance: Applicable requirements in ASHRAE/IESNA 90.1, Section 6 - "Heating, Ventilating, and Air-Conditioning."

D. NFPA Compliance: Comply with NFPA 90A and NFPA 90B.
E. UL Compliance: Comply with UL 1995.

F. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

1.10 WARRANTY

A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to replace components of RTUs that fail in materials or workmanship within specified warranty period.

1. Warranty Period for Compressors: Manufacturer's standard, but not less than five years from date of Substantial Completion.
2. Warranty Period for Gas Furnace Heat Exchangers: Manufacturer's standard, but not less than five years from date of Substantial Completion.
3. Warranty Period for Solid-State Ignition Modules: Manufacturer's standard, but not less than three years from date of Substantial Completion.
4. Warranty Period for Control Boards: Manufacturer's standard, but not less than three years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Basis-of-Design Product: Subject to compliance with requirements, provide the product indicated on Drawings or a comparable product by one of the following:
1. Carrier Corporation.
2. Lennox Industries Inc.
4. Trane; American Standard Companies, Inc.
5. YORK International Corporation.
6. Or equal

2.2 CASING

A. General Fabrication Requirements for Casings: Formed and reinforced double-wall insulated panels, fabricated to allow removal for access to internal parts and components, with joints between sections sealed.

B. Exterior Casing Material: Galvanized steel with factory-painted finish, with pitched roof panels and knockouts with grommet seals for electrical and piping connections and lifting lugs.

1. Exterior Casing Thickness: 0.0626 inch thick.

C. Inner Casing Fabrication Requirements:

1. Inside Casing: Galvanized steel, 0.034 inch thick, perforated 40 percent free area.

D. Casing Insulation and Adhesive: Comply with NFPA 90A or NFPA 90B.

1. Materials: ASTM C 1071, Type I.
2. Thickness: 1 inch.
3. Liner materials shall have air-stream surface coated with an erosion- and temperature-resistant coating or faced with a plain or coated fibrous mat or fabric.
4. Liner Adhesive: Comply with ASTM C 916, Type I.

E. Condensate Drain Pans: Formed sections of stainless-steel sheet, a minimum of 2 inches deep, and complying with ASHRAE 62.1.
 1. Double-Wall Construction: Fill space between walls with foam insulation and seal moisture tight.
 2. Drain Connections: Threaded nipple both sides of drain pan.
 3. Pan-Top Surface Coating: Corrosion-resistant compound.

F. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.

2.3 FANS

A. Direct-Driven Supply-Air Fans: Double width, centrifugal; with permanently lubricated, multispeed or ECM motor resiliently mounted in the fan inlet. Aluminum or painted-steel wheels, and galvanized- or painted-steel fan scrolls.

B. Belt-Driven Supply-Air Fans: Double width, forward curved, centrifugal; with permanently lubricated, single-speed motor installed on an adjustable fan base resiliently mounted in the casing. Aluminum or painted-steel wheels, and galvanized- or painted-steel fan scrolls.

C. Condenser-Coil Fan: Propeller, mounted on shaft of permanently lubricated motor.

D. Seismic Fabrication Requirements: Fabricate fan section, internal mounting frame and attachment to fans, fan housings, motors, casings, accessories, and other fan section components with reinforcement strong enough to withstand seismic forces defined in Section 230548 "Vibration and Seismic Controls for HVAC" when fan-mounted frame and RTU-mounted frame are anchored to building structure.

E. Fan Motor: Comply with requirements in Section 230513 "Common Motor Requirements for HVAC Equipment."

2.4 COILS

A. Supply-Air Refrigerant Coil:
 1. Aluminum or Copper-plate fin and seamless internally grooved copper tube in steel casing with equalizing-type vertical distributor.
 2. Polymer strip shall prevent all copper coil from contacting steel coil frame or condensate pan.
 4. Baked phenolic or Cathodic epoxy coating.
 5. Condensate Drain Pan: Galvanized steel with corrosion-resistant coating or Stainless steel formed with pitch and drain connections complying with ASHRAE 62.1.

B. Outdoor-Air Refrigerant Coil:
 1. Aluminum or Copper-plate fin and seamless internally grooved copper tube in steel casing with equalizing-type vertical distributor.
 2. Polymer strip shall prevent all copper coil from contacting steel coil frame or condensate pan.
 3. Baked phenolic or Cathodic epoxy coating.
C. Hot-Gas Reheat Refrigerant Coil:

1. Aluminum or Copper-plate fin and seamless internally grooved copper tube in steel casing with equalizing-type vertical distributor.
2. Polymer strip shall prevent all copper coil from contacting steel coil frame or condensate pan.
3. Baked phenolic or Cathodic epoxy coating.

D. Electric-Resistance Heating:

1. Open Heating Elements: Resistance wire of 80 percent nickel and 20 percent chromium, supported and insulated by floating ceramic bushings recessed into casing openings, fastened to supporting brackets, and mounted in galvanized-steel frame. Terminate elements in stainless-steel machine-staked terminals secured with stainless-steel hardware.
2. Overtemperature Protection: Disk-type, automatically reset, thermal-cutout, safety device; serviceable through terminal box.
3. Overcurrent Protection: Manual-reset thermal cutouts, factory wired in each heater stage.
4. Control Panel: Unit mounted with disconnecting means and overcurrent protection. Include the following controls:
 a. Magnetic or Mercury contactors.
 b. Step Controller: Pilot lights and override toggle switch for each step.
 c. SCR Controller: Pilot lights operate on load ratio, a minimum of five steps.
 d. Time-delay relay.
 e. Airflow proving switch.

2.5 REFRIGERANT CIRCUIT COMPONENTS

A. Number of Refrigerant Circuits: Two.

B. Compressor: Hermetic, reciprocating, Semihermetic, reciprocating, or Hermetic, scroll, mounted on vibration isolators; with internal overcurrent and high-temperature protection, internal pressure relief, and crankcase heater.

C. Refrigeration Specialties:

1. Expansion valve with replaceable thermostatic element.
2. Refrigerant filter/dryer.
5. Minimum off-time relay.
7. Brass service valves installed in compressor suction and liquid lines.
8. Low-ambient kit high-pressure sensor.
9. Hot-gas reheat solenoid valve with a replaceable magnetic coil.
10. Hot-gas bypass solenoid valve with a replaceable magnetic coil.
11. Four-way reversing valve with a replaceable magnetic coil, thermostatic expansion valves with bypass check valves, and a suction line accumulator.

2.6 AIR FILTRATION

A. Minimum arrestance according to ASHRAE 52.1, and a minimum efficiency reporting value (MERV) according to ASHRAE 52.2.

1. Glass Fiber: Minimum 80 percent arrestance, and MERV 5.
2. Pleated: Minimum 90 percent arrestance, and MERV 7.

2.7 GAS FURNACE

A. Description: Factory assembled, piped, and wired; complying with ANSI Z21.47 and NFPA 54.
 1. CSA Approval: Designed and certified by and bearing label of CSA.

B. Burners: Stainless steel.
 1. Fuel: Natural gas.
 2. Ignition: Electronically controlled electric spark or hot-surface igniter with flame sensor.

C. Heat-Exchanger and Drain Pan: Stainless steel.

D. Venting: Gravity vented.

E. Safety Controls:
 1. Gas Control Valve: Modulating.

2.8 DAMPERS

A. Outdoor-Air Damper: Linked damper blades, for 0 to 25 percent outdoor air, with motorized damper filter.

B. Outdoor- and Return-Air Mixing Dampers: Parallel- or opposed-blade galvanized-steel dampers mechanically fastened to cadmium plated for galvanized-steel operating rod in reinforced cabinet. Connect operating rods with common linkage and interconnect linkages so dampers operate simultaneously.
 1. Damper Motor: Modulating with adjustable minimum position.
 2. Relief-Air Damper: Gravity actuated or motorized, as required by ASHRAE/IESNA 90.1, with bird screen and hood.

2.9 ELECTRICAL POWER CONNECTION

A. Provide for single connection of power to unit with unit-mounted disconnect switch accessible from outside unit and control-circuit transformer with built-in overcurrent protection.

2.10 CONTROLS

A. Control equipment and sequence of operation are specified in Section 230900 "Instrumentation and Control for HVAC."

B. Basic Unit Controls:
 1. Control-voltage transformer.
2. Unit-Mounted Annunciator Panel for Each Unit:
 a. Lights to indicate power on, cooling, heating, fan running, filter dirty, and unit alarm or failure.
 b. DDC controller or programmable timer and interface with HVAC instrumentation and control system.
 c. Digital display of outdoor-air temperature, supply-air temperature, return-air temperature, economizer damper position, indoor-air quality, and control parameters.

C. DDC Controller:

1. Controller shall have volatile-memory backup.
2. Safety Control Operation:
 a. Smoke Detectors: Stop fan and close outdoor-air damper if smoke is detected. Provide additional contacts for alarm interface to fire alarm control panel.
 b. Firestats: Stop fan and close outdoor-air damper if air greater than 130 deg F enters unit. Provide additional contacts for alarm interface to fire alarm control panel.
 c. Fire Alarm Control Panel Interface: Provide control interface to coordinate with operating sequence described in Section 283111 "Digital, Addressable Fire-Alarm System" and Section 283112 "Zoned (DC Loop) Fire-Alarm System."
 d. Low-Discharge Temperature: Stop fan and close outdoor-air damper if supply air temperature is less than 40 deg F.
 e. Defrost Control for Condenser Coil: Pressure differential switch to initiate defrost sequence.

3. Scheduled Operation: Occupied and unoccupied periods on seven-day clock with a minimum of four programmable periods per day.
4. Unoccupied Period:
 a. Heating Setback: 10 deg F.
 c. Override Operation: Two hours.

5. Supply Fan Operation:
 a. Occupied Periods: Run fan continuously.
 b. Unoccupied Periods: Cycle fan to maintain setback temperature.

6. Refrigerant Circuit Operation:
 a. Occupied Periods: Cycle or stage compressors, and operate hot-gas bypass to match compressor output to cooling load to maintain room temperature and humidity. Cycle condenser fans to maintain maximum hot-gas pressure. Operate low-ambient control kit to maintain minimum hot-gas pressure.
 b. Unoccupied Periods: Cycle compressors and condenser fans for heating to maintain setback temperature.
 c. Switch reversing valve for heating or cooling mode on air-to-air heat pump.

7. Hot-Gas Reheat-Coil Operation:
 a. Occupied Periods: Humidistat opens hot-gas valve to provide hot-gas reheat, and cycles compressor.
 b. Unoccupied Periods: Reheat not required.
8. Gas Furnace Operation:
 a. Occupied Periods: Modulate burner to maintain room temperature.
 b. Unoccupied Periods: Cycle burner to maintain setback temperature.

9. Electric-Heating-Coil Operation:
 a. Occupied Periods: Cycle coil to maintain room temperature.
 b. Unoccupied Periods: Energize coil to maintain setback temperature.
 c. Operate supplemental electric heating coil with compressor for heating with outdoor temperature below 25 deg F.

10. Fixed Minimum Outdoor-Air Damper Operation:
 a. Occupied Periods: Open to 25 percent.
 b. Unoccupied Periods: Close the outdoor-air damper.

11. Economizer Outdoor-Air Damper Operation:
 a. Occupied Periods: Open to 25 percent fixed minimum intake, and maximum 100 percent of the fan capacity to comply with ASHRAE Cycle II. Controller shall permit air-side economizer operation when outdoor air is less than 60 deg F. Use mixed-air and outdoor-air temperature to adjust mixing dampers. Start relief-air fan with end switch on outdoor-air damper. During economizer cycle operation, lock out cooling.
 b. Unoccupied Periods: Close outdoor-air damper and open return-air damper.
 c. Outdoor-Airflow Monitor: Accuracy maximum plus or minus 5 percent within 15 and 100 percent of total outdoor air. Monitor microprocessor shall adjust for temperature.

12. Carbon Dioxide Sensor Operation:
 a. Occupied Periods: Reset minimum outdoor-air ratio down to minimum 10 percent to maintain maximum 1000-ppm concentration.
 b. Unoccupied Periods: Close outdoor-air damper and open return-air damper.

D. Interface Requirements for HVAC Instrumentation and Control System:
 1. Interface relay for scheduled operation.
 2. Interface relay to provide indication of fault at the central workstation and diagnostic code storage.
 3. Provide compatible interface for central HVAC control workstation for the following:
 a. Adjusting set points.
 b. Monitoring supply fan start, stop, and operation.
 c. Inquiring data to include outdoor-air damper position, supply- and room-air temperature and humidity.
 d. Monitoring occupied and unoccupied operations.
 e. Monitoring constant and variable motor loads.
 f. Monitoring variable-frequency drive operation.
 g. Monitoring cooling load.
 h. Monitoring economizer cycles.
 i. Monitoring air-distribution static pressure and ventilation air volume.
2.11 ACCESSORIES
A. Electric heater with integral thermostat maintains minimum 50 deg F temperature in gas burner compartment.
B. Duplex, 115-V, ground-fault-interrupter outlet with 15-A overcurrent protection. Include transformer if required. Outlet shall be energized even if the unit main disconnect is open.
C. Low-ambient kit using staged, damper on, or variable-speed condenser fans for operation down to 35 deg F.
D. Filter differential pressure switch with sensor tubing on either side of filter. Set for final filter pressure loss.
E. Coil guards of painted, galvanized-steel wire.
F. Hail guards of galvanized steel, painted to match casing.

2.12 ROOF CURBS
A. Roof curbs with vibration isolators and wind or seismic restraints are specified in Section 230548 "Vibration and Seismic Controls for HVAC."
B. Materials: Galvanized steel with corrosion-protection coating, watertight gaskets, and factory-installed wood nailer; complying with NRCA standards.
 1. Curb Insulation and Adhesive: Comply with NFPA 90A or NFPA 90B.
 a. Materials: ASTM C 1071, Type I or II.
 b. Thickness: 1 inch.
 2. Application: Factory applied with adhesive and mechanical fasteners to the internal surface of curb.
 a. Liner Adhesive: Comply with ASTM C 916, Type I.
 b. Mechanical Fasteners: Galvanized steel, suitable for adhesive attachment, mechanical attachment, or welding attachment to duct without damaging liner when applied as recommended by manufacturer and without causing leakage in cabinet.
 c. Liner materials applied in this location shall have air-stream surface coated with a temperature-resistant coating or faced with a plain or coated fibrous mat or fabric depending on service air velocity.
 d. Liner Adhesive: Comply with ASTM C 916, Type I.
C. Curb Height: minimum 14 inches, field verify.
D. Wind and Seismic Restraints: Metal brackets compatible with the curb and casing, painted to match RTU, used to anchor unit to the curb, and designed for loads at Project site. Comply with requirements in Section 230548 "Vibration and Seismic Controls for HVAC" for wind-load requirements.
3.1 EXAMINATION

A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of RTUs.

B. Examine roughing-in for RTUs to verify actual locations of piping and duct connections before equipment installation.

C. Examine roofs for suitable conditions where RTUs will be installed.

D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Equipment Mounting:

1. Install RTUs on cast-in-place concrete equipment bases. Comply with requirements for equipment bases and foundations specified in Section 033000 "Cast-in-Place Concrete."

2. Comply with requirements for vibration isolation and seismic control devices specified in Section 230548 "Vibration and Seismic Controls for HVAC."

3. Comply with requirements for vibration isolation devices specified in Section 230548.13 "Vibration Controls for HVAC."

B. Roof Curb: Install on roof structure or concrete base, level and secure, according to NRCA's "Low-Slope Membrane Roofing Construction Details Manual," Illustration "Raised Curb Detail for Rooftop Air Handling Units and Ducts." or ARI Guideline B. Install RTUs on curbs and coordinate roof penetrations and flashing with roof construction specified in Section 077200 "Roof Accessories." Secure RTUs to upper curb rail, and secure curb base to roof framing or concrete base with anchor bolts.

C. Unit Support: Install unit level on structural curbs. Coordinate wall penetrations and flashing with wall construction. Secure RTUs to structural support with anchor bolts.

3.3 CONNECTIONS

A. Install condensate drain, minimum connection size, with trap and indirect connection to nearest roof drain or area drain.

B. Duct installation requirements are specified in other HVAC Sections. Drawings indicate the general arrangement of ducts. The following are specific connection requirements:

1. Install ducts to termination at top of roof curb.

2. Remove roof decking only as required for passage of ducts. Do not cut out decking under entire roof curb.

3. Connect supply ducts to RTUs with flexible duct connectors specified in Section 233300 "Air Duct Accessories."

4. Install return-air duct continuously through roof structure.

5. Install normal-weight, 3000-psi, compressive strength (28-day) concrete mix inside roof curb, 4 inches thick. Concrete, formwork, and reinforcement are specified with concrete.
3.4 FIELD QUALITY CONTROL

A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections. Report results in writing.

B. Perform tests and inspections and prepare test reports.

1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing. Report results in writing.

C. Tests and Inspections:

1. After installing RTUs and after electrical circuitry has been energized, test units for compliance with requirements.
2. Inspect for and remove shipping bolts, blocks, and tie-down straps.
3. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
4. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

D. Remove and replace malfunctioning units and retest as specified above.

3.5 STARTUP SERVICE

A. Engage a factory-authorized service representative to perform startup service.

B. Complete installation and startup checks according to manufacturer's written instructions and do the following:

1. Inspect for visible damage to unit casing.
2. Inspect for visible damage to furnace combustion chamber.
3. Inspect for visible damage to compressor, coils, and fans.
4. Inspect internal insulation.
5. Verify that labels are clearly visible.
6. Verify that clearances have been provided for servicing.
7. Verify that controls are connected and operable.
8. Verify that filters are installed.
9. Clean condenser coil and inspect for construction debris.
10. Clean furnace flue and inspect for construction debris.
11. Connect and purge gas line.
12. Remove packing from vibration isolators.
13. Inspect operation of barometric relief dampers.
14. Verify lubrication on fan and motor bearings.
15. Inspect fan-wheel rotation for movement in correct direction without vibration and binding.
16. Adjust fan belts to proper alignment and tension.
17. Start unit according to manufacturer's written instructions.

 a. Start refrigeration system.
 b. Do not operate below recommended low-ambient temperature.
 c. Complete startup sheets and attach copy with Contractor's startup report.

18. Inspect and record performance of interlocks and protective devices; verify sequences.
19. Operate unit for an initial period as recommended or required by manufacturer.
20. Perform the following operations for both minimum and maximum firing. Adjust burner for peak efficiency.
 a. Measure gas pressure on manifold.
 b. Inspect operation of power vents.
 c. Measure combustion-air temperature at inlet to combustion chamber.
 d. Measure flue-gas temperature at furnace discharge.
 e. Perform flue-gas analysis. Measure and record flue-gas carbon dioxide and oxygen concentration.
 f. Measure supply-air temperature and volume when burner is at maximum firing rate and when burner is off. Calculate useful heat to supply air.

22. Adjust and inspect high-temperature limits.
23. Inspect outdoor-air dampers for proper stroke and interlock with return-air dampers.
24. Start refrigeration system and measure and record the following when ambient is a minimum of 15 deg F above return-air temperature:
 a. Coil leaving-air, dry- and wet-bulb temperatures.
 b. Coil entering-air, dry- and wet-bulb temperatures.
 c. Outdoor-air, dry-bulb temperature.
 d. Outdoor-air-coil, discharge-air, dry-bulb temperature.

25. Inspect controls for correct sequencing of heating, mixing dampers, refrigeration, and normal and emergency shutdown.
26. Measure and record the following minimum and maximum airflows. Plot fan volumes on fan curve.
 a. Supply-air volume.
 b. Return-air volume.
 c. Relief-air volume.
 d. Outdoor-air intake volume.

27. Simulate maximum cooling demand and inspect the following:
 a. Compressor refrigerant suction and hot-gas pressures.
 b. Short circuiting of air through condenser coil or from condenser fans to outdoor-air intake.

28. Verify operation of remote panel including pilot-light operation and failure modes. Inspect the following:
 b. Low-temperature safety operation.
 c. Filter high-pressure differential alarm.
 d. Economizer to minimum outdoor-air changeover.
 e. Relief-air fan operation.
 f. Smoke and firestat alarms.

29. After startup and performance testing and prior to Substantial Completion, replace existing filters with new filters.
3.6 CLEANING AND ADJUSTING

A. Occupancy Adjustments: When requested within 12 months of date of Substantial Completion, provide on-site assistance in adjusting system to suit actual occupied conditions. Provide up to two visits to site during other-than-normal occupancy hours for this purpose.

B. After completing system installation and testing, adjusting, and balancing RTU and air-distribution systems, clean filter housings and install new filters.

3.7 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain RTUs. Refer to Section 017900 "Demonstration and Training."

END OF SECTION 237413
SECTION 237423.13 - PACKAGED, DIRECT-FIRED, OUTDOOR, MAKEUP-AIR UNITS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes direct-fired heating and ventilating units.

1.3 DEFINITIONS

A. BAS: Building automation system.

1.4 ACTION SUBMITTALS

A. Product Data: For each type and configuration of outdoor, direct-fired heating and ventilating unit.
 1. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.

B. Shop Drawings: For each type and configuration of outdoor, direct-fired heating and ventilating unit.
 1. Signed, sealed, and prepared by or under the supervision of a qualified professional engineer.
 2. Include plans, elevations, sections, and [mounting] [attachment] details.
 3. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 4. Detail fabrication and assembly of gas-fired heating and ventilating units, as well as procedures and diagrams.
 5. Design Calculations: Calculate requirements for selecting vibration isolators and seismic restraints and for designing vibration isolation bases.
 6. Vibration Isolation Base Details: Detail fabrication including anchorages and attachments to structure and to supported equipment. Include auxiliary motor slides and rails, and base weights.
 7. Include diagrams for power, signal, and control wiring.

1.5 INFORMATIONAL SUBMITTALS

A. Startup service reports.

B. Sample Warranty: For manufacturer's special warranty.

C. Seismic Qualification Certificates: For outdoor, direct-fired heating and ventilating units, accessories, and components, from manufacturer.
1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

1.6 CLOSEOUT SUBMITTALS
A. Operation and Maintenance Data: For direct-fired heating and ventilating units to include in emergency, operation, and maintenance manuals.

1.7 MAINTENANCE MATERIAL SUBMITTALS
A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Filters: One set(s) for each unit.
 2. Fan Belts: One set(s) for each unit.

1.8 QUALITY ASSURANCE
A. Comply with NFPA 70.
 B. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1, Section 5 - "Systems and Equipment" and Section 7 - "Construction and Startup."
 C. ASHRAE/IES 90.1 Compliance: Applicable requirements in ASHRAE/IES 90.1, Section 6 - "Heating, Ventilating, and Air-Conditioning."

1.9 WARRANTY
A. Special Warranty: Manufacturer agrees to repair or replace components of direct-fired heating and ventilating units that fail in materials or workmanship within specified warranty period.
 1. Warranty Period for Heat Exchangers: Manufacturer's standard, but not less than five years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 MANUFACTURERS
A. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 4. Trane Inc.
 5. Or equal
2.2 SYSTEM DESCRIPTION

A. Factory-assembled, prewired, self-contained unit consisting of cabinet, supply fan, controls, filters, Direct Expansion (DX) Cooling Coil, and direct-fired gas burner to be installed exterior to the building.

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

2.3 UNIT CASINGS

A. General Fabrication Requirements for Casings:

1. Forming: Form walls, roofs, and floors with at least two breaks at each joint.
2. Casing Joints: Sheet metal screws or pop rivets, factory sealed with water-resistant sealant.
3. Factory Finish for Steel and Galvanized-Steel Casings: Immediately after cleaning and pretreating, apply manufacturer's standard two-coat, baked-on enamel finish, consisting of prime coat and thermosetting topcoat.
4. Air-Handling-Unit Mounting Frame: Formed galvanized-steel channel or structural channel supports, designed for low deflection, welded with integral lifting lugs.
 a. Seismic Fabrication Requirements: Fabricate mounting base and attachment to air-handling-unit sections, accessories, and components with reinforcement strong enough to withstand seismic forces defined in Section 230548 "Vibration and Seismic Controls for HVAC" when air-handling-unit frame is anchored to building structure.
5. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.

B. Configuration: Horizontal unit with bottom discharge for roof-mounting installation.

C. Cabinet: Galvanized-steel panels, formed to ensure rigidity and supported by galvanized-steel channels or structural channel supports with lifting lugs. Duct flanges at inlet and outlet. Pitched roof panels and knockouts with grommet seals for electrical and piping connections and lifting lugs.

D. Outer Casing: 0.0598-inch-thick steel with heat-resistant, baked-enamel over-corrosion-resistant-treated surface in color to match fan section finish.

E. Inner Casing:

1. Burner Section Inner Casing: 0.0299-inch-thick steel.
2. Double-wall casing with inner wall of perforated steel.
 a. Blower section.
 b. Filter section.
 c. Mixing box.
 d. Inlet plenum.
 e. Discharge plenum.
 f. Access Doors: Hinged with handles for burner, cooling coil, and fan motor assemblies on both sides of unit.

3. Internal Insulation: Fibrous-glass duct lining, neoprene coated, comply with ASTM C 1071, Type II, applied on complete unit.
 a. Thickness: 2 inches.
b. Insulation Adhesive: Comply with ASTM C 916, Type I.
c. Density: 1.5 lb/cu. ft.
d. Mechanical Fasteners: Galvanized steel suitable for adhesive, mechanical, or welding attachment to casing without damaging liner when applied as recommended by manufacturer and without causing air leakage.

F. Discharge Section:

 a. Leakage: Low leakage.
2. Down-discharge plenum insulated with 1-inch, 1.5-lb/cu. ft. fibrous glass.

G. Casing Insulation and Adhesive:

2. Location and Application: Factory applied with adhesive and mechanical fasteners to the internal surface of section panels downstream from, and including, the heating-coil section.
 a. Liner Adhesive: Comply with ASTM C 916, Type I.
 b. Mechanical Fasteners: Galvanized steel, suitable for adhesive, mechanical, or welding attachment to duct without damaging liner when applied as recommended by manufacturer and without causing leakage in cabinet.
 c. Liner materials applied in this location shall have airstream surface coated with a temperature-resistant coating or faced with a plain or coated fibrous mat or fabric, depending on service-air velocity.
3. Location and Application: Encased between outside and inside casing.

H. Inspection and Access Panels and Access Doors:

1. Panel and Door Fabrication: Formed and reinforced, single- or double-wall and insulated panels of same materials and thicknesses as casing.
2. Inspection and Access Panels:
 a. Fasteners: Two or more camlock type for panel lift-out operation. Arrangement shall allow panels to be opened against air-pressure differential.
 b. Gasket: Neoprene, applied around entire perimeters of panel frames.
 c. Size: Large enough to allow inspection and maintenance of air-handling unit's internal components.
3. Access Doors:
 a. Hinges: A minimum of two ball-bearing hinges or stainless-steel piano hinge and two wedge-lever-type latches, operable from inside and outside. Arrange doors to be opened against air-pressure differential.
 b. Gasket: Neoprene, applied around entire perimeters of panel frames.
 c. Fabricate windows in [fan section's] doors of double-glazed, wire-reinforced safety glass with an air space between panes and sealed with interior and exterior rubber seals.
 d. Size: At least 18 inches wide by full height of unit casing up to a maximum height of 60 inches.
4. Locations and Applications:
 a. Fan Section: Doors and inspection and access panels.
b. Access Section: Doors.
c. Coil Section: Inspection and access panels.
d. Damper Section: Doors.
e. Filter Section: Doors large enough to allow periodic removal and installation of filters.
f. Mixing Section: Doors.

5. Service Light: 100-W vaporproof fixture with switched junction box located outside adjacent to door.

2.4 ACCESSORIES
A. Duplex, 115-V, ground-fault-interrupter outlet with 15-A overcurrent protection. Include transformer if required.[Outlet shall be energized even if the unit main disconnect is open.]
B. Low-ambient kit using staged [damper on] variable-speed condenser fans for operation down to [35 deg F (1.7 deg C)] <Insert temperature>.
C. Filter differential pressure switch with sensor tubing on either side of filter. Set for final filter pressure loss.
D. Coil guards of painted, galvanized-steel wire.
E. Hail guards of galvanized steel, painted to match casing.

2.5 OUTDOOR-AIR INTAKE HOOD
A. Type: Manufacturer's standard hood or louver.
B. Materials: Match cabinet.
C. Bird Screen: Comply with requirements in ASHRAE 62.1.
D. Filter: Aluminum, 2 inches cleanable.
E. Configuration: Designed to inhibit wind-driven rain and snow from entering unit.

2.6 ROOF CURBS
A. Roof curbs with vibration isolators and wind or seismic restraints are specified in Section 230548 "Vibration and Seismic Controls for HVAC."
B. Materials: Galvanized steel with corrosion-protection coating, watertight gaskets, and factory-installed wood nailer; complying with NRCA standards.
 1. Curb Insulation and Adhesive: Comply with NFPA 90A or NFPA 90B.
 a. Materials: ASTM C 1071, Type I or Type II.
 b. Thickness: 2 inches.
 2. Application: Factory applied with adhesive and mechanical fasteners to the internal surface of curb.
a. Liner Adhesive: Comply with ASTM C 916, Type I.

b. Mechanical Fasteners: Galvanized steel, suitable for adhesive attachment, mechanical attachment, or welding attachment to duct without damaging liner when applied as recommended by manufacturer and without causing leakage in cabinet.

c. Liner materials applied in this location shall have air-stream surface coated with a temperature-resistant coating or faced with a plain or coated fibrous mat or fabric depending on service air velocity.

d. Liner Adhesive: Comply with ASTM C 916, Type I.

C. Curb Height: minimum 14 inches, field verify.

D. Wind and Seismic Restraints: Metal brackets compatible with the curb and casing, painted to match unit, used to anchor unit to the curb, and designed for loads at Project site. Comply with requirements in Section 230548 "Vibration and Seismic Controls for HVAC" for wind-load requirements.

2.7 SUPPLY-AIR FAN

A. Fan Type: Centrifugal, rated according to AMCA 210; statically and dynamically balanced, galvanized steel; mounted on solid-steel shaft with heavy-duty, self-aligning, permanently lubricated ball bearings. Bearing rating: L10 of 150,000 hours.

B. Drive: V-belt drive with matching fan pulley and adjustable motor sheaves and belt assembly.

C. Mounting: Fan wheel, motor, and drives shall be mounted in fan casing with spring isolators.

D. Fan-Shaft Lubrication Lines: Extended to a location outside the casing.

2.8 DIRECT EXPANSION COOLING COIL

A. Requirements shall be similar to what’s specified in section 238126 Split System Air Conditioners.

2.9 AIR FILTERS

A. Comply with NFPA 90A.

B. Disposable Panel Filters: Factory-fabricated, flat-panel-type, disposable air filters with holding frames, with a MERV 6 according to ASHRAE 52.2.

1. Thickness: 2 inches.
2. Frame: Galvanized steel.

2.10 DAMPERS

A. Outdoor-Air Damper: Galvanized-steel, opposed-blade dampers with vinyl blade seals and stainless-steel jamb seals, having a maximum leakage of 10 cfm/sq. ft. of damper area, at a differential pressure of 2-inch wg.

B. Damper Operator: Direct coupled, electronic with spring return or fully modulating as required by the control sequence.
2.11 DIRECT-FIRED GAS BURNER

1. CSA Approval: Designed and certified by and bearing label of CSA.
 a. Gas Control Valve: Modulating.
 b. Fuel: Natural gas.
 c. Minimum Combustion Efficiency: 95 percent.
 d. Ignition: Electronically controlled electric spark with flame sensor.

B. Safety Controls:

1. Vent Flow Verification.
2. Control Transformer: 24-V ac.
3. High Limit: Thermal switch or fuse to stop burner.
5. Purge-period timer shall automatically delay burner ignition and bypass low-limit control.
8. Automatic-Reset, High-Limit Control Device: Stops burner and closes main gas valve if high-limit temperature is exceeded.
9. Safety Lockout Switch: Locks out ignition sequence if burner fails to light after three tries. Controls are reset manually by turning the unit off and on.

2.12 UNIT CONTROL PANEL

A. Factory-wired, fuse-protected control transformer, connection for power supply and field-wired unit to remote control panel.

B. Control Panel: Recessed, with trim ring, remote panel, with engraved plastic cover and the following lights and switches:

1. On-off-auto fan switch.
4. Heating operation indicating light.
5. Thermostat.
6. Damper position potentiometer.
7. Dirty-filter indicating light operated by unit-mounted differential pressure switch.
8. Safety-lockout indicating light.
9. Enclosure: NEMA 250, Type 3R.

2.13 CONTROLS

A. Comply with requirements in Section 230900 "Instrumentation and Control for HVAC" and Section 230993 "Sequence of Operations for HVAC Controls" for control equipment and sequence of operation.
B. Control Devices:

3. Static-Pressure Transmitter: Nondirectional sensor with suitable range for expected input, and temperature compensated.
4. Fire-Protection Thermostats: Fixed or adjustable settings to operate at not less than 75 deg F above normal maximum operating temperature.
5. Timers: Seven-day, programming-switch timer with synchronous-timing motor and seven-day dial; continuously charged, nickel-cadmium-battery-driven, eight-hour, power-failure carryover; multiple-switch trippers; minimum of two and maximum of eight signals per day with two normally open and two normally closed output contacts.
6. Timers: Solid-state, programmable time control with four separate programs; 24-hour battery carryover; individual on-off-auto switches for each program; 365-day calendar with 20 programmable holidays; choice of fail-safe operation for each program; and system fault alarm.
7. Ionization-Type Smoke Detectors: 24-V dc, nominal; self-restoring; plug-in arrangement; integral visual-indicating light; sensitivity that can be tested and adjusted in place after installation; integral addressable module; remote controllability; responsive to both visible and invisible products of combustion; self-compensating for changes in environmental conditions.

C. Fan Control: Interlock fan to start with exhaust fan(s) to which this heating and ventilating unit is associated for makeup air.

D. Fan Control: Timer starts and stops direct-fired heating and ventilating unit and exhaust fan(s).

1. Smoke detectors, located in supply[and return] air, shall stop fans when the presence of smoke is detected.

E. Outdoor-Air Damper Control, 100 Percent Outdoor-Air Units: Outdoor-air damper shall open when supply fan starts, and close when fan stops.

F. Temperature Control: Operates gas valve to maintain supply-air temperature.

1. Operates gas valve to maintain discharge-air temperature with factory-mounted sensor in blower outlet.
2. Burner Control: 20 to 100 percent modulation of the firing rate. 10 to 100 percent with dual burner units.

G. BAS Interface: Factory-installed hardware and software to enable the BAS to monitor, control, and display status and alarms of heating and ventilating unit.

1. Hardwired Points:
 a. Room temperature.
 b. Discharge-air temperature.
 c. Burner operating.

2. ASHRAE 135.1 (BACnet) communication interface with the BAS shall enable the BAS operator to remotely control and monitor the heating and ventilating unit from an operator workstation. Control features and monitoring points displayed locally at heating and ventilating unit control panel shall be available through the BAS.
2.14 MOTORS

A. Comply with NEMA designation, temperature rating, service factor, and efficiency requirements for motors specified in Section 230513 "Common Motor Requirements for HVAC Equipment."

1. Enclosure: Totally enclosed, fan cooled.
2. Efficiency: Premium efficient.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.

B. Examine roughing-in for piping, ducts, and electrical systems to verify actual locations of piping and electrical connections before equipment installation.

C. Verify cleanliness of airflow path to include inner-casing surfaces, filters, coils, turning vanes, fan wheels, and other components.

D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Equipment Mounting:

1. Install heating and ventilating unit on cast-in-place concrete equipment base(s).
2. Comply with requirements for vibration isolation and seismic control devices specified in Section 230548 "Vibration and Seismic Controls for HVAC."

B. Unit Support: Install heating and ventilating unit level on structural curbs. Coordinate wall penetrations and flashing with wall construction. Secure units to structural support with anchor bolts.

C. Install gas-fired units according to NFPA 54, "National Fuel Gas Code."

D. Install controls and equipment shipped by manufacturer for field installation with direct-fired heating and ventilating units.

E. Roof Curb: Install on roof structure or concrete base, level and secure, according to NRCA's "Low-Slope Membrane Roofing Construction Details Manual," Illustration "Raised Curb Detail for Rooftop Air Handling Units and Ducts." Install units on curbs and coordinate roof penetrations and flashing with roof construction specified in Section 077200 "Roof Accessories." Secure units to upper curb rail, and secure curb base to roof framing or concrete base with anchor bolts.

F. Unit Support: Install unit level on structural curbs. Coordinate wall penetrations and flashing with wall construction. Secure units to structural support with anchor bolts.
3.3 CONNECTIONS

A. Drawings indicate general arrangement of piping, fittings, and specialties.
 1. Gas Piping: Comply with requirements in Section 221123 "Facility Natural-Gas Piping." Connect gas piping with shutoff valve and union, and with sufficient clearance for burner removal and service. Make final connections of gas piping to unit with corrugated, stainless-steel tubing flexible connectors complying with ANSI LC 1/CSA 6.26 equipment connections.

B. Drain: Comply with requirements in Section 221316 "Sanitary Waste and Vent Piping" for traps and accessories on piping connections to condensate drain pans under condensing heat exchangers. Where installing piping adjacent to heating and ventilating units, allow space for service and maintenance.

C. Duct Connections: Connect supply ducts to direct-fired heating and ventilating units with flexible duct connectors. Comply with requirements in Section 233300 "Air Duct Accessories" for flexible duct connectors.

D. Ground equipment according to Section 260526 "Grounding and Bonding for Electrical Systems."

E. Connect wiring according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

3.4 FIELD QUALITY CONTROL

A. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.

B. Perform tests and inspections with the assistance of a factory-authorized service representative.

C. Units will be considered defective if they do not pass tests and inspections.

D. Prepare test and inspection reports.

3.5 STARTUP SERVICE

A. Engage a factory-authorized service representative to perform startup service.

B. Complete installation and startup checks according to manufacturer's written instructions and perform the following:
 1. Inspect for visible damage to burner combustion chamber.
 2. Inspect casing insulation for integrity, moisture content, and adhesion.
 3. Verify that clearances have been provided for servicing.
 4. Verify that controls are connected and operable.
 5. Verify that filters are installed.
 6. Purge gas line.
 7. Inspect and adjust vibration isolators and seismic restraints.
 8. Verify bearing lubrication.
 9. Inspect fan-wheel rotation for movement in correct direction without vibration and binding.
 10. Adjust fan belts to proper alignment and tension.

C. Start unit according to manufacturer's written instructions.
 1. Complete startup sheets and attach copy with Contractor's startup report.
2. Inspect and record performance of interlocks and protective devices; verify sequences.
3. Operate unit for run-in period recommended by manufacturer.
4. Perform the following operations for both minimum and maximum firing, and adjust burner for peak efficiency:
 a. Measure gas pressure at manifold.
 b. Measure combustion-air temperature at inlet to combustion chamber.
 c. Measure supply-air temperature and volume when burner is at maximum firing rate and when burner is off. Calculate useful heat to supply air.
5. Calibrate thermostats.
6. Adjust and inspect high-temperature limits.
7. Inspect dampers, if any, for proper stroke and interlock with return-air dampers.
8. Inspect controls for correct sequencing of heating, mixing dampers, refrigeration, and normal and emergency shutdown.
9. Measure and record airflow. Plot fan volumes on fan curve.
10. Verify operation of remote panel, including pilot-operation and failure modes. Inspect the following:
 a. High-limit heat.
 b. Alarms.
11. After startup and performance testing, change filters, verify bearing lubrication, and adjust belt tension.
13. Verify outdoor-air damper operation.

3.6 ADJUSTING
 A. Adjust initial temperature set points.
 B. Set field-adjustable switches and circuit-breaker trip ranges as indicated.
 C. Occupancy Adjustments: When requested within 12 months from date of Substantial Completion, provide on-site assistance in adjusting system to suit actual occupied conditions. Provide up to two visits to Project during other-than-normal occupancy hours for this purpose.

3.7 DEMONSTRATION
 A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain heating and ventilating units.

END OF SECTION 237423.13
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes split-system air-conditioning and heat-pump units consisting of separate evaporator-fan and compressor-condenser components.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated. Include rated capacities, operating characteristics, and furnished specialties and accessories. Include performance data in terms of capacities, outlet velocities, static pressures, sound power characteristics, motor requirements, and electrical characteristics.

B. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.
 1. Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 2. Wiring Diagrams: For power, signal, and control wiring.

C. Samples for Initial Selection: For units with factory-applied color finishes.

1.4 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.

B. Warranty: Sample of special warranty.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For split-system air-conditioning units to include in emergency, operation, and maintenance manuals.

1.6 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Filters: One set(s) for each air-handling unit.

DWG Consulting Engineers
Brooks Stadium Renovation – Phase 2
State Project No. H17-9610-MJ-B

238126 - 1

SPLIT-SYSTEM AIR-CONDITIONERS
State Project No. H17-9610-MJ-B
2. Gaskets: One set(s) for each access door.
3. Fan Belts: One set(s) for each air-handling unit fan.

1.7 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. ASHRAE Compliance:

1. Fabricate and label refrigeration system to comply with ASHRAE 15, "Safety Standard for Refrigeration Systems."
2. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1, Section 4 - "Outdoor Air Quality," Section 5 - "Systems and Equipment," Section 6 - "Procedures," and Section 7 - "Construction and System Start-up."

C. ASHRAE/IESNA Compliance: Applicable requirements in ASHRAE/IESNA 90.1.

1.8 COORDINATION

A. Coordinate sizes and locations of concrete bases with actual equipment provided. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork are specified in Section 033000 "Cast-in-Place Concrete."

B. Coordinate sizes and locations of roof curbs, equipment supports, and roof penetrations with actual equipment provided.

1.9 WARRANTY

A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace components of split-system air-conditioning units that fail in materials or workmanship within specified warranty period.

1. Warranty Period:

 a. For Compressor: Five year(s) from date of Substantial Completion.
 b. For Parts: Five year(s) from date of Substantial Completion.
 c. For Labor: Five year(s) from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:

2. Lennox International Inc.
3. Trane; a business of American Standard companies.
4. YORK; a Johnson Controls company.
5. or equal.

2.2 INDOOR UNITS (5 TONS OR LESS)

A. Concealed Evaporator-Fan Components:

1. Chassis: Galvanized steel with flanged edges, removable panels for servicing, and insulation on back of panel.
2. Insulation: Faced, glass-fiber duct liner.
5. Fan: Forward-curved, double-width wheel of galvanized steel; directly connected to motor.
6. Fan Motors:
 a. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements specified in Section 230513 "Common Motor Requirements for HVAC Equipment."
 b. Multitapped, multispeed with internal thermal protection and permanent lubrication.
 c. Wiring Terminations: Connect motor to chassis wiring with plug connection.
7. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.
8. Filters: Permanent, cleanable.
9. Condensate Drain Pans:
 a. Fabricated with two percent slope in at least two planes to collect condensate from cooling coils (including coil piping connections, coil headers, and return bends) and humidifiers, and to direct water toward drain connection.
 1) Length: Extend drain pan downstream from leaving face to comply with ASHRAE 62.1.
 2) Depth: A minimum of 2 inches deep.
 c. Double-wall, stainless-steel sheet with space between walls filled with foam insulation and moisture-tight seal.
 d. Drain Connection: Located at lowest point of pan and sized to prevent overflow. Terminate with threaded nipple on both ends of pan.
 1) Minimum Connection Size: NPS 1.
 e. Pan-Top Surface Coating: Asphaltic waterproofing compound.
 f. Units with stacked coils shall have an intermediate drain pan to collect condensate from top coil.

B. Wall-Mounted, Evaporator-Fan Components:
1. Cabinet: Enameled steel with removable panels on front and ends in color selected by Architect, and discharge drain pans with drain connection.
2. Refrigerant Coil: Copper tube, with mechanically bonded aluminum fins and thermal-expansion valve. Comply with ARI 206/110.
5. Fan Motors:
 a. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements specified in Section 230513 “Common Motor Requirements for HVAC Equipment.”
 b. Multitapped, multispeed with internal thermal protection and permanent lubrication.
 c. Enclosure Type: Totally enclosed, fan cooled.
 d. NEMA Premium (TM) efficient motors as defined in NEMA MG 1.
 e. Controllers, Electrical Devices, and Wiring: Comply with requirements for electrical devices and connections specified in electrical Sections.
 f. Mount unit-mounted disconnect switches on exterior of unit.
6. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.
7. Condensate Drain Pans:
 a. Fabricated with two percent slope in at least two planes to collect condensate from cooling coils (including coil piping connections, coil headers, and return bends) and humidifiers, and to direct water toward drain connection.
 1) Length: Extend drain pan downstream from leaving face to comply with ASHRAE 62.1.
 2) Depth: A minimum of 1 inch deep.
 c. Double-wall, stainless-steel sheet with space between walls filled with foam insulation and moisture-tight seal.
 d. Drain Connection: Located at lowest point of pan and sized to prevent overflow. Terminate with threaded nipple on both ends of pan.
 1) Minimum Connection Size: NPS 1.
 e. Pan-Top Surface Coating: Asphaltic waterproofing compound.
8. Air Filtration Section:
 a. General Requirements for Air Filtration Section:
 1) Comply with NFPA 90A.
 2) Minimum Arrestance: According to ASHRAE 52.1 and MERV according to ASHRAE 52.2.
 3) Filter-Holding Frames: Arranged for flat or angular orientation, with access doors on both sides of unit. Filters shall be removable from one side or lifted out from access plenum.
b. Disposable Panel Filters:
 1) Factory-fabricated, viscous-coated, flat-panel type.
 2) Arrestance according to ASHRAE 52.1: 80.
 3) Merv according to ASHRAE 52.2: 5.
 4) Media: Interlaced glass fibers sprayed with nonflammable adhesive and antimicrobial agent.
 5) Frame: Galvanized steel, with metal grid on outlet side, steel rod grid on inlet side, and hinged; with pull and retaining handles.

c. Extended-Surface, Disposable Panel Filters:
 1) Factory-fabricated, dry, extended-surface type.
 2) Arrestance according to ASHRAE 52.1: 90.
 3) Merv according to ASHRAE 52.2: 7.
 4) Media: Fibrous material formed into deep-V-shaped pleats with antimicrobial agent and held by self-supporting wire grid.
 5) Media-Grid Frame: Nonflammable cardboard, Galvanized steel, or Fire-retardant, 3/4-inch particleboard with gaskets.
 6) Mounting Frames: Welded, galvanized steel, with gaskets and fasteners; suitable for bolting together into built-up filter banks.

2.3 INDOOR UNITS (6 TONS OR MORE)

A. Concealed Evaporator-Fan Components:
 1. Chassis: Galvanized steel with flanged edges, removable panels for servicing, and insulation on back of panel.
 2. Insulation: Faced, glass-fiber duct liner.
 5. Fan: Forward-curved, double-width wheel of galvanized steel; directly connected to motor.
 6. Fan Motors:
 a. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements specified in Section 230513 "Common Motor Requirements for HVAC Equipment."
 b. Multitapped, multispeed with internal thermal protection and permanent lubrication.
 c. Three-phase, permanently lubricated, ball-bearing motors with built-in thermal-overload protection.
 d. Wiring Terminations: Connect motor to chassis wiring with plug connection.
 7. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.
 8. Filters: 1 inch thick, in fiberboard frames.
 9. Condensate Drain Pans:
a. Fabricated with two percent slope in at least two planes to collect condensate from cooling coils (including coil piping connections, coil headers, and return bends) and humidifiers, and to direct water toward drain connection.

1) Length: Extend drain pan downstream from leaving face to comply with ASHRAE 62.1.
2) Depth: A minimum of 2 inches deep.

c. Double-wall, stainless-steel sheet with space between walls filled with foam insulation and moisture-tight seal.

d. Drain Connection: Located at lowest point of pan and sized to prevent overflow. Terminate with threaded nipple on both ends of pan.

1) Minimum Connection Size: NPS 1.

e. Pan-Top Surface Coating: Asphaltic waterproofing compound.

f. Units with stacked coils shall have an intermediate drain pan to collect condensate from top coil.

B. Floor-Mounted, Evaporator-Fan Components:

1. Cabinet: Enameled steel with removable panels on front and ends in color selected by Architect.

 a. Discharge Grille: Steel with surface-mounted frame.
 b. Insulation: Faced, glass-fiber duct liner.

2. Condensate Drain Pans:

 a. Fabricated with two percent slope in at least two planes to collect condensate from cooling coils (including coil piping connections, coil headers, and return bends) and humidifiers, and to direct water toward drain connection.

1) Length: Extend drain pan downstream from leaving face to comply with ASHRAE 62.1.
2) Depth: A minimum of 2 inches deep.

c. Double-wall, stainless-steel sheet with space between walls filled with foam insulation and moisture-tight seal.

d. Drain Connection: Located at lowest point of pan and sized to prevent overflow. Terminate with threaded nipple on both ends of pan.

1) Minimum Connection Size: NPS 1.

e. Pan-Top Surface Coating: Asphaltic waterproofing compound.

f. Units with stacked coils shall have an intermediate drain pan to collect condensate from top coil.

4. Electric Coil: Helical, nickel-chrome, resistance-wire heating elements; with refractory ceramic support bushings, automatic-reset thermal cutout, built-in magnetic contactors, manual-reset
thermal cutout, airflow proving device, and one-time fuses in terminal box for overcurrent protection.

5. Fan: Direct drive, centrifugal.

6. Fan Motors:
 a. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements specified in Section 230513 "Common Motor Requirements for HVAC Equipment."
 b. Multitapped, multispeed with internal thermal protection and permanent lubrication.
 c. Enclosure Type: Totally enclosed, fan cooled.
 d. NEMA Premium (TM) efficient motors as defined in NEMA MG 1.
 e. Controllers, Electrical Devices, and Wiring: Comply with requirements for electrical devices and connections specified in electrical Sections.
 f. Mount unit-mounted disconnect switches on exterior of unit.

7. Air Filtration Section:
 a. General Requirements for Air Filtration Section:
 1) Comply with NFPA 90A.
 2) Minimum Arrestance: According to ASHRAE 52.1 and a MERV according to ASHRAE 52.2.
 3) Filter-Holding Frames: Arranged for flat or angular orientation, with access doors on both sides of unit. Filters shall be removable from one side or lifted out from access plenum.
 b. Disposable Panel Filters:
 1) Factory-fabricated, viscous-coated, flat-panel type.
 2) Arrestance according to ASHRAE 52.1: 80.
 3) Merv according to ASHRAE 52.2: 5.
 4) Media: Interlaced glass fibers sprayed with nonflammable adhesive and antimicrobial agent.
 5) Frame: Galvanized steel, with metal grid on outlet side, steel rod grid on inlet side, and hinged; with pull and retaining handles.
 c. Extended-Surface, Disposable Panel Filters:
 1) Factory-fabricated, dry, extended-surface type.
 2) Arrestance according to ASHRAE 52.1: 90.
 3) Merv according to ASHRAE 52.2: 7.
 4) Media: Fibrous material formed into deep-V-shaped pleats with antimicrobial agent and held by self-supporting wire grid.
 5) Media-Grid Frame: Nonflammable cardboard, Galvanized steel, or Fire-retardant, 3/4-inch particleboard with gaskets.
 6) Mounting Frames: Welded, galvanized steel, with gaskets and fasteners; suitable for bolting together into built-up filter banks.

C. Variable-Frequency Controllers:
 1. Description: NEMA ICS 2, IGBT, PWM, VFC; listed and labeled as a complete unit and arranged to provide variable speed of an NEMA MG 1, Design B, three-phase induction motor by adjusting output voltage and frequency.
2. Isolated control interface to allow controller to follow control signal over an 11:1 speed range.

3. Internal Adjustability Capabilities:
 a. Minimum Speed: 5 to 25 percent of maximum rpm.
 b. Maximum Speed: 80 to 100 percent of maximum rpm.
 c. Acceleration: 2 seconds to a minimum of 22 seconds.
 d. Deceleration: 2 seconds to a minimum of 22 seconds.
 e. Current Limit: 50 percent to a minimum of 110 percent of maximum rating.

4. Self-Protection and Reliability Features:
 a. Input transient protection by means of surge suppressors.
 b. Undervoltage and overvoltage trips; inverter overtemperature, overload, and overcurrent trips.
 c. Notch filter to prevent operation of the controller-motor-load combination at a natural frequency of the combination.
 d. Instantaneous line-to-line and line-to-ground overcurrent trips.
 e. Loss-of-phase protection.
 f. Reverse-phase protection.
 g. Short-circuit protection.
 h. Motor overtemperature fault.

5. Automatic Reset/Restart: Attempts three restarts after controller fault or on return of power after an interruption and before shutting down for manual reset or fault correction. Bidirectional autospeed search shall be capable of starting into rotating loads, spinning in either direction and returning motor to set speed in proper direction, without damage to controller, motor, or load.

6. Power-Interruption Protection: Prevents motor from re-energizing after a power interruption until motor has stopped.

7. Torque Boost: Automatically varies starting and continuous torque to at least 1.5 times the minimum torque to ensure high-starting torque and increased torque at slow speeds.

9. Door-mounted, digital status lights shall indicate the following conditions:
 a. Power on.
 b. Run.
 c. Overvoltage.
 d. Line fault.
 e. Overcurrent.
 f. External fault.

11. Meters or digital readout devices and selector switch, mounted flush in controller door and connected, to indicate the following controller parameters:
 a. Output frequency (Hertz).
 b. Motor speed (rpm).
 c. Motor status (running, stop, fault).
 d. Motor current (amperes).
 e. Motor torque (percent).
 f. Fault or alarming status (code).
 g. Proportional-integral-derivative feedback signal (percent).
 h. DC-link voltage (volts dc).
i. Set-point frequency (Hertz).

j. Motor output voltage (volts).

12. Control Signal Interface:

 a. Electric Input Signal Interface: A minimum of two analog inputs (0 to 10 V or 0/4-20 mA) and six programmable digital inputs.

 b. Remote signal inputs capable of accepting any of the following speed-setting input signals from the control system:

 1) 0 to 10-V dc.
 2) 0-20 or 4-20 mA.
 3) Potentiometer using up/down digital inputs.
 4) Fixed frequencies using digital inputs.
 5) RS485.
 6) Keypad display for local hand operation.

 c. Output signal interface with a minimum of one analog output signal (0/4-20 mA), which can be programmed to any of the following:

 1) Output frequency (Hertz).
 2) Output current (load).
 3) DC-link voltage (volts dc).
 4) Motor torque (percent).
 5) Motor speed (rpm).
 6) Set-point frequency (Hertz).

 d. Remote indication interface with a minimum of two dry circuit relay outputs (120-V ac, 1 A) for remote indication of the following:

 1) Motor running.
 2) Set-point speed reached.
 3) Fault and warning indication (overtemperature or overcurrent).
 4) High- or low-speed limits reached.

13. Communications: RS485 interface allows VFC to be used with an external system within a multidrop LAN configuration. Interface shall allow all parameter settings of VFC to be programmed via BMS control. Provide capability for VFC to retain these settings within the nonvolatile memory.

14. Accessories:

 a. Devices shall be factory installed in controller enclosure unless otherwise indicated.

 c. Standard Displays:

 1) Output frequency (Hertz).
 2) Set-point frequency (Hertz).
 3) Motor current (amperes).
 4) DC-link voltage (volts dc).
 5) Motor torque (percent).
 6) Motor speed (rpm).
 7) Motor output voltage (volts).
2.4 OUTDOOR UNITS (5 TONS OR LESS)

A. Air-Cooled, Compressor-Condenser Components:

1. Casing: Steel, finished with baked enamel in color selected by Architect, with removable panels for access to controls, weep holes for water drainage, and mounting holes in base. Provide brass service valves, fittings, and gage ports on exterior of casing.

2. Compressor: Hermetically sealed with crankcase heater and mounted on vibration isolation device. Compressor motor shall have thermal- and current-sensitive overload devices, start capacitor, relay, and contactor.
 a. Compressor Type: Scroll.
 b. Two-speed compressor motor with manual-reset high-pressure switch and automatic-reset low-pressure switch.
 c. Refrigerant Coil: Copper tube, with mechanically bonded aluminum fins and liquid subcooler. Comply with ARI 206/110.

4. Fan: Aluminum-propeller type, directly connected to motor.

5. Motor: Permanently lubricated, with integral thermal-overload protection.

6. Low Ambient Kit: Permits operation down to 45 deg F.

2.5 OUTDOOR UNITS (6 TONS OR MORE)

A. Air-Cooled, Compressor-Condenser Components:

1. Casing: Steel, finished with baked enamel in color selected by Architect, with removable panels for access to controls, weep holes for water drainage, and mounting holes in base. Provide brass service valves, fittings, and gage ports on exterior of casing.

2. Compressor: Hermetically sealed with crankcase heater and mounted on vibration isolation device. Compressor motor shall have thermal- and current-sensitive overload devices, start capacitor, relay, and contactor.
 a. Compressor Type: Scroll.
 b. Two-speed compressor motor with manual-reset high-pressure switch and automatic-reset low-pressure switch.
 c. Refrigerant Coil: Copper tube, with mechanically bonded aluminum fins and liquid subcooler. Comply with ARI 206/110.

4. Fan: Aluminum-propeller type, directly connected to motor.

5. Motor: Permanently lubricated, with integral thermal-overload protection.

6. Low Ambient Kit: Permits operation down to 45 deg F.

2.6 ACCESSORIES

A. Control equipment and sequence of operation are specified in Section 230900 "Instrumentation and Control for HVAC" and Section 230993 "Sequence and Operations for HVAC Controls."
B. Thermostat: Low voltage with subbase to control compressor and evaporator fan.

C. Thermostat: Wireless infrared functioning to remotely control compressor and evaporator fan, with the following features:

1. Compressor time delay.
2. 24-hour time control of system stop and start.
3. Liquid-crystal display indicating temperature, set-point temperature, time setting, operating mode, and fan speed.
4. Fan-speed selection including auto setting.

D. Automatic-reset timer to prevent rapid cycling of compressor.

E. Refrigerant Line Kits: Soft-annealed copper suction and liquid lines factory cleaned, dried, pressurized, and sealed; factory-insulated suction line with flared fittings at both ends.

F. Drain Hose: For condensate.

G. Additional Monitoring:

1. Monitor constant and variable motor loads.
3. Monitor economizer cycle.
4. Monitor cooling load.
5. Monitor air distribution static pressure and ventilation air volumes.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install units level and plumb.

B. Install evaporator-fan components using manufacturer's standard mounting devices securely fastened to building structure.

C. Install roof-mounted, compressor-condenser components on equipment supports specified in Section 077200 "Roof Accessories." Anchor units to supports with removable, cadmium-plated fasteners.

D. Equipment Mounting:

1. Install ground-mounted, compressor-condenser components on cast-in-place concrete equipment base(s). Comply with requirements for equipment bases and foundations specified in Section 033000 "Cast-in-Place Concrete." or Section 033053 "Miscellaneous Cast-in-Place Concrete."
2. Install ground-mounted, compressor-condenser components on polyethylene mounting base.
3. Comply with requirements for vibration isolation and seismic control devices specified in Section 230548 "Vibration and Seismic Controls for HVAC."

E. Install and connect precharged refrigerant tubing to component's quick-connect fittings. Install tubing to allow access to unit.
3.2 CONNECTIONS

A. Piping installation requirements are specified in other Sections. Drawings indicate general arrangement of piping, fittings, and specialties.

B. Where piping is installed adjacent to unit, allow space for service and maintenance of unit.

C. Duct Connections: Duct installation requirements are specified in Section 233113 "Metal Ducts." Drawings indicate the general arrangement of ducts. Connect supply and return ducts to split-system air-conditioning units with flexible duct connectors. Flexible duct connectors are specified in Section 233300 "Air Duct Accessories."

3.3 FIELD QUALITY CONTROL

A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections.

B. Perform tests and inspections.

1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

C. Tests and Inspections:

1. Leak Test: After installation, charge system and test for leaks. Repair leaks and retest until no leaks exist.
2. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
3. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

D. Remove and replace malfunctioning units and retest as specified above.

E. Prepare test and inspection reports.

3.4 STARTUP SERVICE

A. Engage a factory-authorized service representative to perform startup service.

1. Complete installation and startup checks according to manufacturer's written instructions.

3.5 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain units.

END OF SECTION 238126
SECTION 238200 - WALL AND CEILING UNIT HEATERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section includes wall and ceiling heaters with propeller fans and electric-resistance heating coils.

1.3 ACTION SUBMITTALS
A. Product Data: For each type of product.
 1. Include rated capacities, operating characteristics, furnished specialties, and accessories.
B. Shop Drawings:
 1. Include plans, elevations, sections, and details.
 2. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 3. Include details of anchorages and attachments to structure and to supported equipment.
 4. Include equipment schedules to indicate rated capacities, operating characteristics, furnished specialties, and accessories.

1.4 CLOSEOUT SUBMITTALS
A. Operation and Maintenance Data: For wall and ceiling unit heaters to include in emergency, operation, and maintenance manuals.

PART 2 - PRODUCTS

2.1 MANUFACTURERS
A. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 1. Chromalox, Inc.
 2. Indeeco.
 5. QMark; Marley Engineered Products.
 6. Trane Inc.
2.2 DESCRIPTION
A. Assembly including chassis, electric heating coil, fan, motor, and controls. Comply with UL 2021.
B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

2.3 CABINET
A. Front Panel: Stamped-steel louver, with removable panels fastened with tamperproof fasteners.
B. Finish: Baked enamel over baked-on primer with manufacturer's standard color selected by Architect, applied to factory-assembled and -tested wall and ceiling heaters before shipping.
C. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.
D. Surface-Mounted Cabinet Enclosure: Steel with finish to match cabinet.

2.4 COIL

2.5 FAN AND MOTOR
A. Fan: Aluminum propeller directly connected to motor.
B. Motor: Permanently lubricated. Comply with requirements in Section 230513 "Common Motor Requirements for HVAC Equipment."

2.6 CONTROLS
A. Controls: Unit-mounted or wall mounted thermostat. Low-voltage relay with transformer kit.
B. Electrical Connection: Factory wire motors and controls for a single field connection with disconnect switch.

PART 3 - EXECUTION

3.1 EXAMINATION
A. Examine areas to receive wall and ceiling unit heaters for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
B. Examine roughing-in for electrical connections to verify actual locations before unit-heater installation.
C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Install wall and ceiling unit heaters to comply with NFPA 90A.

B. Install wall and ceiling unit heaters level and plumb.

C. Install wall-mounted thermostats and switch controls in electrical outlet boxes at heights to match lighting controls. Verify location of thermostats and other exposed control sensors with Drawings and room details before installation.

D. Ground equipment according to Section 260526 "Grounding and Bonding for Electrical Systems."

E. Connect wiring according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

END OF SECTION 238200