<table>
<thead>
<tr>
<th>UNIT I.D.</th>
<th>VOLTS</th>
<th>PHASES</th>
<th>LOAD (VA)</th>
<th>BRANCH CIRCUIT WIRING</th>
<th>DISCONNECT / STARTER</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>WH-W210</td>
<td>208 V</td>
<td>2</td>
<td>9000</td>
<td>#8, #10(G) IN 3/4"C NFDS 60/2/1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WH-W210</td>
<td>208 V</td>
<td>2</td>
<td>9000</td>
<td>#8, #10(G) IN 3/4"C NFDS 60/2/1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AH-1 EH</td>
<td>480 V</td>
<td>3</td>
<td>89291</td>
<td>#1/0, #6(G) IN 1-1/2"C NFDS 200/3/1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DWBP-1</td>
<td>480 V</td>
<td>3</td>
<td>16212</td>
<td>#10, #10(G) IN 3/4"C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HCP-1-5</td>
<td>120 V</td>
<td>1</td>
<td>300</td>
<td>#12, #12(G) IN 3/4"C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HCP-1-1</td>
<td>120 V</td>
<td>1</td>
<td>300</td>
<td>#12, #12(G) IN 3/4"C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELEV-2</td>
<td>480 V</td>
<td>3</td>
<td>35733</td>
<td>#8, #10(G) IN 3/4"C NFDS 60/3/1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELEV-1</td>
<td>480 V</td>
<td>3</td>
<td>35733</td>
<td>#8, #10(G) IN 3/4"C NFDS 60/3/1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EH-37</td>
<td>277 V</td>
<td>1</td>
<td>4000</td>
<td>#12, #12(G) IN 3/4"C NFDS 30/2/1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EH-23</td>
<td>277 V</td>
<td>1</td>
<td>4000</td>
<td>#12, #12(G) IN 3/4"C NFDS 30/2/1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EH-22</td>
<td>277 V</td>
<td>1</td>
<td>3000</td>
<td>#12, #12(G) IN 3/4"C NFDS 30/2/1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EH-16</td>
<td>208 V</td>
<td>2</td>
<td>3000</td>
<td>#12, #12(G) IN 3/4"C NFDS 30/2/1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WH-N106</td>
<td>277 V</td>
<td>1</td>
<td>5540</td>
<td>#12, #12(G) IN 3/4"C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MUAU-1</td>
<td>208 V</td>
<td>3</td>
<td>9835</td>
<td>#8, #10(G) IN 3/4"C NFDS 60/3/3R</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RTU GAS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WH-W313-A</td>
<td>277 V</td>
<td>1</td>
<td>5540</td>
<td>#10, #10(G) IN 3/4"C NFDS 30/2/3R</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WH-W302-A</td>
<td>277 V</td>
<td>1</td>
<td>4150</td>
<td>#10, #10(G) IN 3/4"C NFDS 30/2/3R</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WH-W317</td>
<td>277 V</td>
<td>1</td>
<td>5540</td>
<td>#10, #10(G) IN 3/4"C NFDS 30/2/3R</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WH-W315</td>
<td>277 V</td>
<td>1</td>
<td>4150</td>
<td>#10, #10(G) IN 3/4"C NFDS 30/2/3R</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WH-W309</td>
<td>277 V</td>
<td>1</td>
<td>8320</td>
<td>#8, #10(G), IN 3/4"C NFDS 60/2/3R</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WH-W205</td>
<td>277 V</td>
<td>1</td>
<td>8320</td>
<td>#8, #10(G), IN 3/4"C NFDS 60/2/3R</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KEF-2</td>
<td>208 V</td>
<td>2</td>
<td>2080</td>
<td>#12, #12(G) IN 3/4"C NFDS 30/2/1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHP-8</td>
<td>208 V</td>
<td>2</td>
<td>9381</td>
<td>#8, #10(G) IN 3/4"C NFDS 60/2/3R</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHP-7</td>
<td>208 V</td>
<td>2</td>
<td>9381</td>
<td>#8, #10(G) IN 3/4"C NFDS 60/2/3R</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHP-5</td>
<td>208 V</td>
<td>2</td>
<td>9381</td>
<td>#8, #10(G) IN 3/4"C NFDS 60/2/3R</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHP-2</td>
<td>208 V</td>
<td>2</td>
<td>9381</td>
<td>#8, #10(G) IN 3/4"C NFDS 60/2/3R</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EQUIPMENT CONSTRUCTION SPECIFICATIONS

EQUIPMENT CONSTRUCTION SCHEDULE

ELECTRICAL COMPONENT IMPORTANCE FACTOR (Ip) DESIGNATION

- Ip = 1.0: RESTRAIN ALL
- Ip > 1.0: RESTRAIN ALL
- Ip < 1.0: RESTRAIN ALL

COMPONENT REQUIREMENTS

- Roof Mounting: RESTRAIN ALL
- Floor Mounting: RESTRAIN ALL
- Component Supports: RESTRAIN ALL
- Suspended Equipment: RESTRAIN ALL

COMPONENT IDENTIFICATION

- CABLE TRUNK IN CLAUSIONS
- TRAPEZE
- WALL MOUNTED
- TRAY
- TRAPEZED CONDUIT
- DUCTILE PIPING (I.E. PLASTIC) MUST BE RESTRAINED.

EQUIPMENT CONNECTION SCHEDULE

Electrical Heat Controls

- 1. ELECTRICAL HEATERS
- 2. DUCTLESS HEAT COOL
- 3. KITCHEN EXHAUST FAN

NOTES:

1. YELLOW PANS CONTROLLED BY ROOMS OCCUPANCY SENSOR.
2. REDD COLOR PANS FROM OUTSIDE LIGHT.
3. SEE VARIOUS SCHEDULES FOR CIRCUIT AND CONDUCTOR SIZES.

CONSTRUCTION DOCUMENTS

E002

COASTAL CAROLINA UNIVERSITY

BROOKS STADIUM ADDITIONS

RECEIVED DATE OF ISSUE

'12-13-01

PROJECT NUMBER:

CONSTRUCTION SCHEDULES & DETAILS

UNIVERSITY CONSULTING ENGINEERS

No.C03649

University Blvd, Conway, SC

918-846-1440
<table>
<thead>
<tr>
<th>LED</th>
<th>ACTION</th>
<th>MANUFACTURER A</th>
<th>CAT A</th>
<th>MANUFACTURER B</th>
<th>CAT B</th>
<th>MANUFACTURER C</th>
<th>CAT C</th>
<th>COLOR</th>
<th>INSTALLATION</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>4' LINEAR, SEALED AND GASKETED</td>
<td>LITHONIA</td>
<td>VAP-4000LM</td>
<td>FST-WD</td>
<td>277</td>
<td>35K-80CRI-BSL722-WLFEND2</td>
<td>HE WILLIAMS</td>
<td>96-4-L40/835-HIAFR-DRV-277</td>
<td>COLUMBIA</td>
<td>LXEM-4-40-LW-RFA-EU</td>
</tr>
<tr>
<td>2.</td>
<td>2'x4' LED RECESSED TROFFER</td>
<td>LITHONIA</td>
<td>2G TL-4-30L-LP835</td>
<td>EL14L</td>
<td>HE WILLIAMS</td>
<td>LPT-24-L42/835-S-AF12125-EM/10W-DIM-277</td>
<td>COLUMBIA</td>
<td>LJT24-35MWG-FSA12125-EDU-ELL14</td>
<td>LED 3000 3500 K 3 277 V RECESSED/LAY-IN</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>3' LINEAR ALCOVE WITH ASYMETRIC DISTRIBUTION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>4' LINEAR ALCOVE WITH ASYMETRIC DISTRIBUTION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTES:
- MANUFACTURER "A" IS A CAMPUS STANDARD. MANUFACTURERS "B," "C," AND "D" EQUALS WILL REQUIRE APPROVAL BY COASTAL CAROLINA UNIVERSITY.
- ARCHITECT TO SELECT FINISH/COLOR.
- USE LITHONIA FIXTURES UNLESS SPECIFIED TO THE REVERSE.
- PROVIDE TRANSFORMER AND ACCESSORIES AS NECESSARY.

LIGHTING CONTROL SCHEME:
- CONTROL TYPE: DIMMABLE
- INSTALLATION MOUNTED TO WALL
- POWER SUPPLY: 120 V

CONTROL TYPE DESCRIPTION:
- MONO CHROME
- COLOR TEMPERATURE: 2700 K
- OUTPUT POWER: 10 W
- DIMMABLE
- INSTALLATION MOUNTED TO WALL

CONSTRUCTION DOCUMENTS:
- SHEET TITLE: LIGHTING CONTROL SCHEMES AND FIXTURE SCHEDULES
- DRAWN BY: 10/11/2017

ADDITIONS:
- PHASE 2
- UNIVERSITY Blvd, Conway, SC
- UNIVERSITY OF SOUTH CAROLINA
- UNIVERSITY STADIUM

INSTRUMENTS:
- MODULAR LIGHTING
- ADDITION TO EXISTING WALL SCONCE LAMP COLOR. MANUFACTURER SHALL COORDINATE WITH EXISTING SCONCES.
- PROVIDE PENDANT IN LENGTH ASREQUIRED TO MATCH EXISTING FIXTURE MOUNTING HEIGHT.
- AE PENDANT CYLINDER TO MATCH EXISTING PRESCOLITE MC10L ED-P-6L-40K-8-XFL55-SL-WH HE WILLIAMS LC7-L60C/840-XX-XX-M-PMXX-DRV-UNV GOTHAM ICO-40/60-6AR-LSS-55D-277-E Z10-PM-XX LED 6000 4000 K 67 277 V MOUNT AT SAME HEIGHT AS EXISTING PENDANTS,
- K2 FLOOD LIGHT, NARROW FLOOD BK LIGHTING K2-LED-X47-NF L-XXX-12-11-A BEGA 77 739 HE WILLIAMS VF2-L57/730-MF-SR-DBZ-VF2CS-UNV LED 5700 30 00 K 42 120 V POLE MOUNTED
- K1 FLOOD LIGHT, NARROW SPOT BK LIGHTING K2-LED-X47-NSP-XXX-12-11-A BEGA 77 709 HE WILLIAMS VF2-L57/730-NS-SR-DBZ-VF2CS-UNV LED 5700 30 00 K 42 120 V POLE MOUNTED
- X3 WET LOCATION, SINGLE FACE EXIT SIGN COMPASS CEW SERIES MODEL CEWSXE LITHONIA WLTE-W-1-R COOPER LIGHTING SURE-LITES LPXW-6-1-R-WH LED 3 277 V SURFACE MOUNT TO CEILING 3, 8
NEW DEVICES ON FLOOR

TWO EXISTING

DEVICES ON FLOOR

EXISTING NAC

DAKTRONICS

EQUIPMENT

SSR200

PROVIDE CONNECTIONS

TO BOTTOM FLANG OF

1" CONDUIT SECURED

TO BOTTOM FLANG OF

MODULE

REMOTE

BLEACHER

TO ANNUNCIATION

DEVICES ON FLOOR

FOR STROBES

EXISTING NAC

EATON/COOPER ACU

MASS NOTIFICATION

PANEL WITH WAVES

OVER IP IPC

COMMAND N103

LOCATE IN

AUDIO

STATION ON LEVEL 2

MICROPHONE

STATION

REMOTE

(LOC)

7

5

3.

1.

FIRE ALARM SYSTEM GENERAL NOTES

- FIRE FLOORS PLAN FOR EXTENDED COMPREHENSION OF FIRE ALARM SYSTEM
- THE FOLLOWING SHALL OCCUR UPON ACTIVATION OF ANY INITIATING DEVICE:
 A) INITIATING DEVICES SHALL BE SMOKE DETECTORS, DUCT MOUNTED SMOKE DETECTORS, OVERHEAD DETECTORS,ceiling detectors, COMMAND N103 MODULES, ETC.
 B) SHUT DOWN AHU ON DUCT SMOKE DETECTOR SIGNAL.
 C) DIGITAL COMMUNICATOR.
 D) SOUND ALL AUDIBLE DEVICES (SPEAKERS) AND FLASH ALL VISUAL DEVICES (LIGHTS OR STROBES) THROUGHOUT THE ENTIRE FACILITY.
 E) PROVIDE SURGE PROTECTIVE DEVICES FOR ALL INCOMING POWER SOURCES, MUNICIPAL OR REMOTE STATION SIGNALING APPARATUS,
 F) PROVIDE ALL REQUIRED PROGRAMMING, SOFTWARE, AND HARDWARE
- ALL ANNUNCIATORS, SMOKE DOOR HOLD/RELEASE DEVICES, AND REMOTE POWER SOURCES, MUNICIPAL OR REMOTE STATION SIGNALING APPARATUS,
- THE FOLLOWING SHALL OCCUR UPON ACTIVATION OF ANY INITIATING DEVICE:
 A) SHUT DOWN AHU ON DUCT SMOKE DETECTOR SIGNAL.
 B) DIGITAL COMMUNICATOR.
 C) SOUND ALL AUDIBLE DEVICES (SPEAKERS) AND FLASH ALL VISUAL DEVICES (LIGHTS OR STROBES) THROUGHOUT THE ENTIRE FACILITY.
 D) PROVIDE ALL REQUIRED PROGRAMMING, SOFTWARE, AND HARDWARE
- FIRE ALARM SYSTEM CONTROLS, EQUIPMENT, ALARMS, AND OTHER DEVICES, TO INCLUDE DETECTORS, PUMPS, VALVES, BELL RINGS, AND OTHER DEVICES, ALL APPROPRIATELY CONTROLLED BY THE FIRE ALARM SYSTEM. FIRE ALARM SYSTEMS ARE TO INCLUDE REMOTE PUMPS, BANDS, TESTING, INSPECTION, AND MAINTENANCE.
- CONTRACTOR SHALL PROVIDE THREE PARTS OF THIS SYSTEM TO THE UNIVERSITY, THREE PARTS TO THE CORPORATION, AND THREE PARTS TO THE UNIVERSITY.
- CONTRACTOR SHALL PROVIDE THREE PARTS OF THIS SYSTEM TO THE UNIVERSITY, THREE PARTS TO THE CORPORATION, AND THREE PARTS TO THE UNIVERSITY.
- CONTRACTOR SHALL PROVIDE THREE PARTS OF THIS SYSTEM TO THE UNIVERSITY, THREE PARTS TO THE CORPORATION, AND THREE PARTS TO THE UNIVERSITY.
- CONTRACTOR SHALL PROVIDE THREE PARTS OF THIS SYSTEM TO THE UNIVERSITY, THREE PARTS TO THE CORPORATION, AND THREE PARTS TO THE UNIVERSITY.
- CONTRACTOR SHALL PROVIDE THREE PARTS OF THIS SYSTEM TO THE UNIVERSITY, THREE PARTS TO THE CORPORATION, AND THREE PARTS TO THE UNIVERSITY.
- CONTRACTOR SHALL PROVIDE THREE PARTS OF THIS SYSTEM TO THE UNIVERSITY, THREE PARTS TO THE CORPORATION, AND THREE PARTS TO THE UNIVERSITY.
- CONTRACTOR SHALL PROVIDE THREE PARTS OF THIS SYSTEM TO THE UNIVERSITY, THREE PARTS TO THE CORPORATION, AND THREE PARTS TO THE UNIVERSITY.
- CONTRACTOR SHALL PROVIDE THREE PARTS OF THIS SYSTEM TO THE UNIVERSITY, THREE PARTS TO THE CORPORATION, AND THREE PARTS TO THE UNIVERSITY.
- CONTRACTOR SHALL PROVIDE THREE PARTS OF THIS SYSTEM TO THE UNIVERSITY, THREE PARTS TO THE CORPORATION, AND THREE PARTS TO THE UNIVERSITY.
- CONTRACTOR SHALL PROVIDE THREE PARTS OF THIS SYSTEM TO THE UNIVERSITY, THREE PARTS TO THE CORPORATION, AND THREE PARTS TO THE UNIVERSITY.
- CONTRACTOR SHALL PROVIDE THREE PARTS OF THIS SYSTEM TO THE UNIVERSITY, THREE PARTS TO THE CORPORATION, AND THREE PARTS TO THE UNIVERSITY.
- CONTRACTOR SHALL PROVIDE THREE PARTS OF THIS SYSTEM TO THE UNIVERSITY, THREE PARTS TO THE CORPORATION, AND THREE PARTS TO THE UNIVERSITY.
- CONTRACTOR SHALL PROVIDE THREE PARTS OF THIS SYSTEM TO THE UNIVERSITY, THREE PARTS TO THE CORPORATION, AND THREE PARTS TO THE UNIVERSITY.
- CONTRACTOR SHALL PROVIDE THREE PARTS OF THIS SYSTEM TO THE UNIVERSITY, THREE PARTS TO THE CORPORATION, AND THREE PARTS TO THE UNIVERSITY.
- CONTRACTOR SHALL PROVIDE THREE PARTS OF THIS SYSTEM TO THE UNIVERSITY, THREE PARTS TO THE CORPORATION, AND THREE PARTS TO THE UNIVERSITY.
- CONTRACTOR SHALL PROVIDE THREE PARTS OF THIS SYSTEM TO THE UNIVERSITY, THREE PARTS TO THE CORPORATION, AND THREE PARTS TO THE UNIVERSITY.
- CONTRACTOR SHALL PROVIDE THREE PARTS OF THIS SYSTEM TO THE UNIVERSITY, THREE PARTS TO THE CORPORATION, AND THREE PARTS TO THE UNIVERSITY.
- CONTRACTOR SHALL PROVIDE THREE PARTS OF THIS SYSTEM TO THE UNIVERSITY, THREE PARTS TO THE CORPORATION, AND THREE PARTS TO THE UNIVERSITY.
- CONTRACTOR SHALL PROVIDE THREE PARTS OF THIS SYSTEM TO THE UNIVERSITY, THREE PARTS TO THE CORPORATION, AND THREE PARTS TO THE UNIVERSITY.
- CONTRACTOR SHALL PROVIDE THREE PARTS OF THIS SYSTEM TO THE UNIVERSITY, THREE PARTS TO THE CORPORATION, AND THREE PARTS TO THE UNIVERSITY.
- CONTRACTOR SHALL PROVIDE THREE PARTS OF THIS SYSTEM TO THE UNIVERSITY, THREE PARTS TO THE CORPORATION, AND THREE PARTS TO THE UNIVERSITY.
- CONTRACTOR SHALL PROVIDE THREE PARTS OF THIS SYSTEM TO THE UNIVERSITY, THREE PARTS TO THE CORPORATION, AND THREE PARTS TO THE UNIVERSITY.
- CONTRACTOR SHALL PROVIDE THREE PARTS OF THIS SYSTEM TO THE UNIVERSITY, THREE PARTS TO THE CORPORATION, AND THREE PARTS TO THE UNIVERSITY.
- CONTRACTOR SHALL PROVIDE THREE PARTS OF THIS SYSTEM TO THE UNIVERSITY, THREE PARTS TO THE CORPORATION, AND THREE PARTS TO THE UNIVERSITY.
- CONTRACTOR SHALL PROVIDE THREE PARTS OF THIS SYSTEM TO THE UNIVERSITY, THREE PARTS TO THE CORPORATION, AND THREE PARTS TO THE UNIVERSITY.
ELEVATOR GENERAL NOTES

1. THE CONTRACTOR SHALL PROVIDE TEMPORARY POWER FOR INSTALLATION OF ELEVATOR EQUIPMENT. THIS INCLUDES A POWER SOURCE CAPABLE OF SUPPLYING CONTINUOUS CURRENT AT THE CONTRACTOR'S OPTION TO THE ELEVATOR AND POWER FOR CONSTRUCTION LIGHTS. CORDS AND WIRE MUST BE PROVIDED BY CONTRACTOR.

2. ELEVATOR KEYED NOTES

POWER PANEL

NORMAL ASSOCIATED ELEVATOR CONTROLLER TERMINALS. ELEVATOR AND POWER FOR OPERATING WORK LIGHTS, NECESSARY THREE PHASE POWER OF SAME INSTALLATION OF ELEVATOR EQUIPMENT. THIS INCLUDES DISCONNECT SWITCH FOR LOCAL POWER DISCONNECT.

3. ELEVATOR CONTROL SYSTEM

SHUNT TRIP (ST) CIRCUIT BREAKERS UPON MODULE SHALL ACTIVATE SHUNT TRIP AT SERVICE ENTRANCE. REFER TO ELECTRICAL FOR ALARM SYSTEM (FACP) CONNECTED TO FIRE ALARM DIVICE (NFDS) TYPICAL:

4. DETECTOR(S) IN ELEVATOR HOISTWAY.

5. CONTROL DEVICE FROM FACP 24 VDC LOOP TYPICAL:

WHT/RED WHITE
WHT/BLK BLUE
BROWN
BLACK

GENERATOR TRANSFER DEVICE 50/30amps 2" TO THE ELECTRICAL ROOM.

6. ELECTRICAL PANEL

NEUTRAL BUS PANEL

NORMAL UL ALARMS IN ELEVATOR SHAFT WALL.

SHUNT TRIP AT SERVICE ENTRANCE

FUSED SWITCH WITH CLASS RK1 CURRENT LIMITING FUSES. SHUNT TRIP BE CONFIRMED AS WELL AS CONNECTIONS TO ENSURE ALL PROPER CONNECTIONS TO ENSURE ALL PROPER CONNECTIONS.

7. GENERATOR TRANSFER DEVICE PHILLIPS M660 240/120 IN ELEVATOR SHAFT WALL.

EMERGENCY TRANSFER DEVICE DETAIL

NOT TO SCALE

8. ELECTRICAL ROOM

ELEVATOR SUMP PUMP DETAIL

NOTE 1. VERTICAL AND PROVIDE ALL PLUMBING AND ELECTRICAL FOR PUMP MANUFACTURER REQUIREMENTS.

9. ELEVATOR SUMP PUMP DETAIL

SHUNT TRIP AT SERVICE ENTRANCE

FUSED SWITCH WITH CLASS RK1 CURRENT LIMITING FUSES. SHUNT TRIP BE CONFIRMED AS WELL AS CONNECTIONS TO ENSURE ALL PROPER CONNECTIONS TO ENSURE ALL PROPER CONNECTIONS.

10. CONTROL PANEL

GENERATOR TRANSFER DEVICE PHILLIPS M660 240/120 IN ELEVATOR SHAFT WALL.

EMERGENCY TRANSFER DEVICE DETAIL

NOT TO SCALE

11. ELECTRICAL ROOM

ELEVATOR SUMP PUMP DETAIL

NOTE 1. VERTICAL AND PROVIDE ALL PLUMBING AND ELECTRICAL FOR PUMP MANUFACTURER REQUIREMENTS.

12. ELEVATOR SUMP PUMP DETAIL

SHUNT TRIP AT SERVICE ENTRANCE
EXISTING PANEL '1H13' 200A MCB

EXISTING PANEL '1H12' 100A MCB

EXISTING PANEL '1H5' 400A MCB

EXISTING PANEL '1L6' 225A MCB

EXISTING PANEL '1L5' 100A MCB

EXISTING WEST ELECTRICAL ROOM

4 #400 KCMIL, #1(G) IN 4”C

EXISTING CONDUCTORS SHALL BE DISCONNECTED FROM EXISTING MDP PANEL ON EAST SIDE OF STADIUM AND PULLED OUT OF EXISTING CONDUIT AND REPLACED THROUGH NEW ELECTRICAL ROOM ON WEST SIDE. INTERCEPT EXISTING CONDUIT TO EXTEND CONDUCTORS TO NEW SWITCHBOARD. EXISTING HORIZONTAL CONDUIT FROM INTERCEPTION POINT TO EXISTING ELECTRICAL ROOM ON EAST SIDE OF STADIUM SHALL REMAIN.

1. DEMOLITION KEY NOTES:
 - DISCONNECT AND REMOVE CONDUCTORS TO MAIN DISTRIBUTION PANEL ON EAST SIDE OF STADIUM. REMOVE CONDUCT OR WIRES EMBEMBED IN FLOOR, WALLS OR ROOF BELOW CIRCUIT.
 - EXISTING CONDUCTORS SHALL BE DISCONNECTED FROM EXISTING MDP PANEL ON EAST SIDE OF STADIUM AND PULLED OUT OF EXISTING CONDUIT AND REPLACED THROUGH NEW SWITCHBOARD ON WEST SIDE.

2. DEMOLITION KEY NOTES:
 - EXISTING 100 AMP CIRCUIT BREAKER THAT SERVED EXISTING PANEL 1H12 ON WEST SIDE OF STADIUM WITH A NEW 250 AMP CIRCUIT BREAKER THAT IS MANUFACTURED AND UL LISTED FOR INSTALLATION IN EXISTING MAIN DISTRIBUTION PANEL ON EAST SIDE OF STADIUM. CONNECT NEW CONDUCTORS TO NEW CIRCUIT BREAKER.

3. DEMOLITION KEY NOTES:
 - SUSPEND TRANSFORMER FROM NEW ROOF STRUCTURE. SEE DETAIL.
Panelboard Schedule

Panelboard: Panel Name

<table>
<thead>
<tr>
<th>No.</th>
<th>Circuit Description</th>
<th>Type</th>
<th>Phases</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>R</th>
<th>E</th>
<th>Panel</th>
<th>Total Connected Current</th>
<th>Source</th>
<th>Mains Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>WEST STANDS PANEL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>65 A 61 A 55 A</td>
<td></td>
<td>480/277 Wye</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>255 A 250 A 248 A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>42940</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>57370</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1062 A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30400</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30340</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>700 A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>725 A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>385 A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>510 A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>525 A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>540 A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>555 A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>570 A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>585 A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>600 A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>615 A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>630 A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>645 A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>660 A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>675 A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>690 A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>705 A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>720 A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>735 A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>750 A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>765 A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>780 A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>795 A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>810 A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>825 A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>840 A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>855 A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>870 A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>885 A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>900 A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>915 A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>930 A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>945 A</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Phase Load: 10,000 VA / 3000 VA
<table>
<thead>
<tr>
<th>NO.</th>
<th>CIRCUIT DESCRIPTION</th>
<th>TRIP</th>
<th>CIRCUIT DESIGNATION</th>
<th>POLES</th>
<th>FRAME SIZE</th>
<th>RATING</th>
<th>LOAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>45</td>
<td>REC - TRAINING</td>
<td>20 A</td>
<td>C105</td>
<td>2</td>
<td>540 VA / 320 VA</td>
<td>1</td>
<td>20 A</td>
</tr>
<tr>
<td>46</td>
<td>ITEM E110 - SODA FOUNTAIN</td>
<td>20 A</td>
<td>E106</td>
<td>4</td>
<td>1700 VA / 1700 VA</td>
<td>1</td>
<td>15 A</td>
</tr>
<tr>
<td>47</td>
<td>ITEM E105 - DRAWER WARMER</td>
<td>20 A</td>
<td>E105</td>
<td>3</td>
<td>900 VA / 1800 VA</td>
<td>1</td>
<td>20 A</td>
</tr>
<tr>
<td>48</td>
<td>ITEM E109 - P.O.S. SYSTEM</td>
<td>20 A</td>
<td>E109</td>
<td>2</td>
<td>720 VA / 720 VA</td>
<td>1</td>
<td>20 A</td>
</tr>
<tr>
<td>49</td>
<td>ITEM E93 - WORK TABLE</td>
<td>20 A</td>
<td>E93</td>
<td>7</td>
<td>1200 VA / 900 VA</td>
<td>1</td>
<td>20 A</td>
</tr>
<tr>
<td>50</td>
<td>ITEM E94 - DRAWER WARMER</td>
<td>20 A</td>
<td>E94</td>
<td>6</td>
<td>1200 VA / 900 VA</td>
<td>1</td>
<td>20 A</td>
</tr>
<tr>
<td>51</td>
<td>ITEM E90 - DRAWER WARMER</td>
<td>20 A</td>
<td>E90</td>
<td>5</td>
<td>900 VA / 900 VA</td>
<td>1</td>
<td>20 A</td>
</tr>
<tr>
<td>52</td>
<td>ITEM E89 - CHILI CHEESE DISPENSER</td>
<td>20 A</td>
<td>E89</td>
<td>4</td>
<td>1200 VA / 900 VA</td>
<td>1</td>
<td>20 A</td>
</tr>
<tr>
<td>53</td>
<td>ITEM E83 - BIB RACK</td>
<td>20 A</td>
<td>E83</td>
<td>3</td>
<td>1440 VA / 1000 VA</td>
<td>1</td>
<td>20 A</td>
</tr>
<tr>
<td>54</td>
<td>ITEM E82 - CHILI CHEESE DISPENSER</td>
<td>20 A</td>
<td>E82</td>
<td>2</td>
<td>1200 VA / 900 VA</td>
<td>1</td>
<td>20 A</td>
</tr>
<tr>
<td>55</td>
<td>ITEM E77 - PEPSI MERCHANDISER</td>
<td>20 A</td>
<td>E77</td>
<td>1</td>
<td>720 VA / 720 VA</td>
<td>1</td>
<td>20 A</td>
</tr>
<tr>
<td>56</td>
<td>ITEM E72 - PREP TABLE</td>
<td>20 A</td>
<td>E72</td>
<td>0</td>
<td>720 VA / 720 VA</td>
<td>1</td>
<td>20 A</td>
</tr>
<tr>
<td>57</td>
<td>ITEM E71 - PREP TABLE</td>
<td>20 A</td>
<td>E71</td>
<td>0</td>
<td>720 VA / 720 VA</td>
<td>1</td>
<td>20 A</td>
</tr>
<tr>
<td>58</td>
<td>ITEM E70 - PREP TABLE</td>
<td>20 A</td>
<td>E70</td>
<td>0</td>
<td>720 VA / 720 VA</td>
<td>1</td>
<td>20 A</td>
</tr>
<tr>
<td>59</td>
<td>ITEM E69 - PREP TABLE</td>
<td>20 A</td>
<td>E69</td>
<td>0</td>
<td>720 VA / 720 VA</td>
<td>1</td>
<td>20 A</td>
</tr>
<tr>
<td>60</td>
<td>ITEM E68 - PREP TABLE</td>
<td>20 A</td>
<td>E68</td>
<td>0</td>
<td>720 VA / 720 VA</td>
<td>1</td>
<td>20 A</td>
</tr>
<tr>
<td>61</td>
<td>ITEM E67 - PREP TABLE</td>
<td>20 A</td>
<td>E67</td>
<td>0</td>
<td>720 VA / 720 VA</td>
<td>1</td>
<td>20 A</td>
</tr>
<tr>
<td>62</td>
<td>ITEM E66 - PREP TABLE</td>
<td>20 A</td>
<td>E66</td>
<td>0</td>
<td>720 VA / 720 VA</td>
<td>1</td>
<td>20 A</td>
</tr>
<tr>
<td>63</td>
<td>ITEM E65 - PREP TABLE</td>
<td>20 A</td>
<td>E65</td>
<td>0</td>
<td>720 VA / 720 VA</td>
<td>1</td>
<td>20 A</td>
</tr>
<tr>
<td>64</td>
<td>ITEM E64 - PREP TABLE</td>
<td>20 A</td>
<td>E64</td>
<td>0</td>
<td>720 VA / 720 VA</td>
<td>1</td>
<td>20 A</td>
</tr>
<tr>
<td>65</td>
<td>ITEM E63 - PREP TABLE</td>
<td>20 A</td>
<td>E63</td>
<td>0</td>
<td>720 VA / 720 VA</td>
<td>1</td>
<td>20 A</td>
</tr>
<tr>
<td>66</td>
<td>ITEM E62 - PREP TABLE</td>
<td>20 A</td>
<td>E62</td>
<td>0</td>
<td>720 VA / 720 VA</td>
<td>1</td>
<td>20 A</td>
</tr>
<tr>
<td>67</td>
<td>ITEM E61 - PREP TABLE</td>
<td>20 A</td>
<td>E61</td>
<td>0</td>
<td>720 VA / 720 VA</td>
<td>1</td>
<td>20 A</td>
</tr>
<tr>
<td>68</td>
<td>ITEM E60 - PREP TABLE</td>
<td>20 A</td>
<td>E60</td>
<td>0</td>
<td>720 VA / 720 VA</td>
<td>1</td>
<td>20 A</td>
</tr>
<tr>
<td>69</td>
<td>ITEM E59 - PREP TABLE</td>
<td>20 A</td>
<td>E59</td>
<td>0</td>
<td>720 VA / 720 VA</td>
<td>1</td>
<td>20 A</td>
</tr>
<tr>
<td>70</td>
<td>ITEM E58 - PREP TABLE</td>
<td>20 A</td>
<td>E58</td>
<td>0</td>
<td>720 VA / 720 VA</td>
<td>1</td>
<td>20 A</td>
</tr>
<tr>
<td>71</td>
<td>ITEM E57 - PREP TABLE</td>
<td>20 A</td>
<td>E57</td>
<td>0</td>
<td>720 VA / 720 VA</td>
<td>1</td>
<td>20 A</td>
</tr>
<tr>
<td>72</td>
<td>ITEM E56 - PREP TABLE</td>
<td>20 A</td>
<td>E56</td>
<td>0</td>
<td>720 VA / 720 VA</td>
<td>1</td>
<td>20 A</td>
</tr>
<tr>
<td>73</td>
<td>ITEM E55 - PREP TABLE</td>
<td>20 A</td>
<td>E55</td>
<td>0</td>
<td>720 VA / 720 VA</td>
<td>1</td>
<td>20 A</td>
</tr>
<tr>
<td>74</td>
<td>ITEM E54 - PREP TABLE</td>
<td>20 A</td>
<td>E54</td>
<td>0</td>
<td>720 VA / 720 VA</td>
<td>1</td>
<td>20 A</td>
</tr>
<tr>
<td>75</td>
<td>ITEM E53 - PREP TABLE</td>
<td>20 A</td>
<td>E53</td>
<td>0</td>
<td>720 VA / 720 VA</td>
<td>1</td>
<td>20 A</td>
</tr>
<tr>
<td>76</td>
<td>ITEM E52 - PREP TABLE</td>
<td>20 A</td>
<td>E52</td>
<td>0</td>
<td>720 VA / 720 VA</td>
<td>1</td>
<td>20 A</td>
</tr>
<tr>
<td>77</td>
<td>ITEM E51 - PREP TABLE</td>
<td>20 A</td>
<td>E51</td>
<td>0</td>
<td>720 VA / 720 VA</td>
<td>1</td>
<td>20 A</td>
</tr>
<tr>
<td>78</td>
<td>ITEM E50 - PREP TABLE</td>
<td>20 A</td>
<td>E50</td>
<td>0</td>
<td>720 VA / 720 VA</td>
<td>1</td>
<td>20 A</td>
</tr>
<tr>
<td>79</td>
<td>ITEM E49 - PREP TABLE</td>
<td>20 A</td>
<td>E49</td>
<td>0</td>
<td>720 VA / 720 VA</td>
<td>1</td>
<td>20 A</td>
</tr>
<tr>
<td>80</td>
<td>ITEM E48 - PREP TABLE</td>
<td>20 A</td>
<td>E48</td>
<td>0</td>
<td>720 VA / 720 VA</td>
<td>1</td>
<td>20 A</td>
</tr>
</tbody>
</table>
Table: Panel Board Schedule

<table>
<thead>
<tr>
<th>CKT NO.</th>
<th>PANEL NAME</th>
<th>SOURCE</th>
<th>ENCLOSURE</th>
<th>MAIN CIRCUIT BREAKER</th>
<th>NO. CIRCUIT DESIGNATION TRIP POLES A B C CIRCUIT DESIGNATION</th>
<th>TOTAL PHASE LOAD</th>
<th>TOTAL CONNECTED LOAD</th>
<th>TOTAL CONNECTED CURRENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>PANEL 1</td>
<td></td>
<td>Type 1</td>
<td>42,000</td>
<td>1LDPW1</td>
<td>1256</td>
<td>207 A</td>
<td>102 A</td>
</tr>
<tr>
<td>21</td>
<td>PANEL 2</td>
<td></td>
<td>Type 1</td>
<td>42,000</td>
<td>2L3W</td>
<td>2720</td>
<td>1440</td>
<td>1456</td>
</tr>
<tr>
<td>22</td>
<td>PANEL 3</td>
<td></td>
<td>Type 1</td>
<td>42,000</td>
<td>2L1W</td>
<td>5612</td>
<td>5612</td>
<td>5612</td>
</tr>
</tbody>
</table>

The above table includes detailed information about each panel board, including circuit designations, load calculations, and load assignments. Each panel board is designed to handle specific electrical loads and is categorized according to its enclosure type. The total phase load, total connected load, and total connected current are calculated for each entry to ensure compliance with electrical standards and safety regulations.
<table>
<thead>
<tr>
<th>No.</th>
<th>Circuit Information</th>
<th>Phase</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>Total Connected Load</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>REC - IT W308</td>
<td>20 A</td>
<td>360 VA</td>
<td>360 VA</td>
<td>20 A</td>
<td>360 VA / 360 VA</td>
</tr>
<tr>
<td>2</td>
<td>REC - IT W308</td>
<td>20 A</td>
<td>360 VA</td>
<td>360 VA</td>
<td>20 A</td>
<td>360 VA / 360 VA</td>
</tr>
<tr>
<td>3</td>
<td>REC - IT W308</td>
<td>20 A</td>
<td>360 VA</td>
<td>360 VA</td>
<td>20 A</td>
<td>360 VA / 360 VA</td>
</tr>
<tr>
<td>4</td>
<td>REC - IT W308</td>
<td>20 A</td>
<td>360 VA</td>
<td>360 VA</td>
<td>20 A</td>
<td>360 VA / 360 VA</td>
</tr>
<tr>
<td>5</td>
<td>REC - IT W308</td>
<td>20 A</td>
<td>360 VA</td>
<td>360 VA</td>
<td>20 A</td>
<td>360 VA / 360 VA</td>
</tr>
<tr>
<td>6</td>
<td>REC - TV</td>
<td>20 A</td>
<td>360 VA</td>
<td>360 VA</td>
<td>20 A</td>
<td>360 VA / 360 VA</td>
</tr>
<tr>
<td>7</td>
<td>REC - TV</td>
<td>20 A</td>
<td>360 VA</td>
<td>360 VA</td>
<td>20 A</td>
<td>360 VA / 360 VA</td>
</tr>
<tr>
<td>8</td>
<td>REC - TV</td>
<td>20 A</td>
<td>360 VA</td>
<td>360 VA</td>
<td>20 A</td>
<td>360 VA / 360 VA</td>
</tr>
<tr>
<td>9</td>
<td>REC - IT W308</td>
<td>20 A</td>
<td>360 VA</td>
<td>2640 VA</td>
<td>20 A</td>
<td>360 VA / 2640 VA</td>
</tr>
<tr>
<td>10</td>
<td>REC - TV</td>
<td>20 A</td>
<td>360 VA</td>
<td>600 VA</td>
<td>20 A</td>
<td>360 VA / 600 VA</td>
</tr>
<tr>
<td>11</td>
<td>REC - TV</td>
<td>20 A</td>
<td>360 VA</td>
<td>600 VA</td>
<td>20 A</td>
<td>360 VA / 600 VA</td>
</tr>
<tr>
<td>12</td>
<td>REC - TV</td>
<td>20 A</td>
<td>360 VA</td>
<td>600 VA</td>
<td>20 A</td>
<td>360 VA / 600 VA</td>
</tr>
<tr>
<td>13</td>
<td>REC - TV</td>
<td>20 A</td>
<td>360 VA</td>
<td>600 VA</td>
<td>20 A</td>
<td>360 VA / 600 VA</td>
</tr>
<tr>
<td>14</td>
<td>REC - TV</td>
<td>20 A</td>
<td>360 VA</td>
<td>600 VA</td>
<td>20 A</td>
<td>360 VA / 600 VA</td>
</tr>
<tr>
<td>15</td>
<td>REC - TV</td>
<td>20 A</td>
<td>360 VA</td>
<td>600 VA</td>
<td>20 A</td>
<td>360 VA / 600 VA</td>
</tr>
<tr>
<td>16</td>
<td>REC - TV</td>
<td>20 A</td>
<td>360 VA</td>
<td>600 VA</td>
<td>20 A</td>
<td>360 VA / 600 VA</td>
</tr>
<tr>
<td>17</td>
<td>REC - TV</td>
<td>20 A</td>
<td>360 VA</td>
<td>600 VA</td>
<td>20 A</td>
<td>360 VA / 600 VA</td>
</tr>
<tr>
<td>18</td>
<td>REC - TV</td>
<td>20 A</td>
<td>360 VA</td>
<td>1200 VA</td>
<td>20 A</td>
<td>360 VA / 1200 VA</td>
</tr>
<tr>
<td>19</td>
<td>REC - TV</td>
<td>20 A</td>
<td>360 VA</td>
<td>1200 VA</td>
<td>20 A</td>
<td>360 VA / 1200 VA</td>
</tr>
<tr>
<td>20</td>
<td>REC - TV</td>
<td>20 A</td>
<td>360 VA</td>
<td>1200 VA</td>
<td>20 A</td>
<td>360 VA / 1200 VA</td>
</tr>
<tr>
<td>21</td>
<td>REC - TV</td>
<td>20 A</td>
<td>360 VA</td>
<td>1200 VA</td>
<td>20 A</td>
<td>360 VA / 1200 VA</td>
</tr>
<tr>
<td>22</td>
<td>REC - TV</td>
<td>20 A</td>
<td>360 VA</td>
<td>1200 VA</td>
<td>20 A</td>
<td>360 VA / 1200 VA</td>
</tr>
<tr>
<td>23</td>
<td>REC - TV</td>
<td>20 A</td>
<td>360 VA</td>
<td>1200 VA</td>
<td>20 A</td>
<td>360 VA / 1200 VA</td>
</tr>
<tr>
<td>24</td>
<td>REC - TV</td>
<td>20 A</td>
<td>360 VA</td>
<td>1200 VA</td>
<td>20 A</td>
<td>360 VA / 1200 VA</td>
</tr>
<tr>
<td>25</td>
<td>REC - TV</td>
<td>20 A</td>
<td>360 VA</td>
<td>1200 VA</td>
<td>20 A</td>
<td>360 VA / 1200 VA</td>
</tr>
<tr>
<td>26</td>
<td>REC - TV</td>
<td>20 A</td>
<td>360 VA</td>
<td>1200 VA</td>
<td>20 A</td>
<td>360 VA / 1200 VA</td>
</tr>
<tr>
<td>27</td>
<td>REC - TV</td>
<td>20 A</td>
<td>360 VA</td>
<td>1200 VA</td>
<td>20 A</td>
<td>360 VA / 1200 VA</td>
</tr>
<tr>
<td>28</td>
<td>REC - TV</td>
<td>20 A</td>
<td>360 VA</td>
<td>1200 VA</td>
<td>20 A</td>
<td>360 VA / 1200 VA</td>
</tr>
<tr>
<td>29</td>
<td>REC - TV</td>
<td>20 A</td>
<td>360 VA</td>
<td>1200 VA</td>
<td>20 A</td>
<td>360 VA / 1200 VA</td>
</tr>
<tr>
<td>30</td>
<td>REC - TV</td>
<td>20 A</td>
<td>360 VA</td>
<td>1200 VA</td>
<td>20 A</td>
<td>360 VA / 1200 VA</td>
</tr>
<tr>
<td>31</td>
<td>REC - TV</td>
<td>20 A</td>
<td>360 VA</td>
<td>1200 VA</td>
<td>20 A</td>
<td>360 VA / 1200 VA</td>
</tr>
<tr>
<td>32</td>
<td>REC - TV</td>
<td>20 A</td>
<td>360 VA</td>
<td>1200 VA</td>
<td>20 A</td>
<td>360 VA / 1200 VA</td>
</tr>
<tr>
<td>33</td>
<td>REC - TV</td>
<td>20 A</td>
<td>360 VA</td>
<td>1200 VA</td>
<td>20 A</td>
<td>360 VA / 1200 VA</td>
</tr>
<tr>
<td>34</td>
<td>REC - TV</td>
<td>20 A</td>
<td>360 VA</td>
<td>1200 VA</td>
<td>20 A</td>
<td>360 VA / 1200 VA</td>
</tr>
<tr>
<td>35</td>
<td>REC - TV</td>
<td>20 A</td>
<td>360 VA</td>
<td>1200 VA</td>
<td>20 A</td>
<td>360 VA / 1200 VA</td>
</tr>
<tr>
<td>36</td>
<td>REC - TV</td>
<td>20 A</td>
<td>360 VA</td>
<td>1200 VA</td>
<td>20 A</td>
<td>360 VA / 1200 VA</td>
</tr>
<tr>
<td>37</td>
<td>REC - TV</td>
<td>20 A</td>
<td>360 VA</td>
<td>1200 VA</td>
<td>20 A</td>
<td>360 VA / 1200 VA</td>
</tr>
<tr>
<td>38</td>
<td>REC - TV</td>
<td>20 A</td>
<td>360 VA</td>
<td>1200 VA</td>
<td>20 A</td>
<td>360 VA / 1200 VA</td>
</tr>
<tr>
<td>39</td>
<td>REC - TV</td>
<td>20 A</td>
<td>360 VA</td>
<td>1200 VA</td>
<td>20 A</td>
<td>360 VA / 1200 VA</td>
</tr>
<tr>
<td>40</td>
<td>REC - TV</td>
<td>20 A</td>
<td>360 VA</td>
<td>1200 VA</td>
<td>20 A</td>
<td>360 VA / 1200 VA</td>
</tr>
<tr>
<td>41</td>
<td>REC - TV</td>
<td>20 A</td>
<td>360 VA</td>
<td>1200 VA</td>
<td>20 A</td>
<td>360 VA / 1200 VA</td>
</tr>
<tr>
<td>42</td>
<td>REC - TV</td>
<td>20 A</td>
<td>360 VA</td>
<td>1200 VA</td>
<td>20 A</td>
<td>360 VA / 1200 VA</td>
</tr>
</tbody>
</table>
POLE MOUNTED FLOOD LIGHTS FOR FLAG POLES. AIM ONE SPOT LIGHT TO EACH FLAG. SEE DETAIL ON THIS SHEET.

1. POLE, CAP AND BASE TO BE BLACK.
2. LIGHT FIXTURE TO BE BLACK FINISH
3. CUSTOM METAL PLATE TO BE BLACK POWDER COATED.

CUSTOM FABRICATED METAL PLATE FOR MOUNTING POLE TO MATCH LIGHT FIXTURE DETAIL
BASE TO MATCH LIGHT FIXTURE DETAIL

NOTE: 2'-0" E100A FLAG POLE LIGHTING DETAIL

CAP TO MATCH LIGHT FIXTURE DETAIL

10 #8 BARS VERTICAL WITH 4 #8 TIES AT 12" O/C CONDUIT

FINISHED GRADE
POURED CONCRETE BASE (3000 PSI MN)
COMPACTED SUBGRADE TO 95% MSP

PHOTOCELL SHALL BE THIS FIXTURE CONTROLLED BY WALL MOUNTED PHOTOCELL FOR LIGHT FIXTURES "PL-1" PROVIDED AS PART OF ALTERNATE #1.
COORDINATE ARCHITECTURAL DRAWING FOR MOUNTING PHOTOCELL ON CONCESSIONS BUILDING.

CONNECT TO EXISTING CONDUIT SERVING SIMILAR COLUMN BOLLARDS. FOR REVISED LOCATION OF EXISTING POST LIGHTS AND EXTEND EXISTING WIRING AS REQUIRED. SEE CIVIL PLANS.

APPROXIMATE LOCATION OF EXISTING UNDERGROUND ELECTRICAL PRIMARY CONDUIT AND CONDUCTORS. PRIOR TO BEGINNING ANY EXCAVATION; LOCATE, MARK AND PROTECT UNDERGROUND PRIMARY.

ARE RELOCATED, ADJUST EXISTING CIRCUITS TO NEW HEIGHT.
CONNECT TO EXISTING CIRCUIT SERVING SIMILAR COLUMN.

THIS WORK PROVIDED IN BASE BID. SEE SHEET E100.

CONDUIT PROVIDED IN BASE BID FOR ALTERNATE #1 FROM CIRCUIT INDICATED. EXTEND NEW CONDUIT FROM PROVIDE 2 #8, #8(G) IN 3/4" CONDUIT TO LIGHT FIXTURE AT EACH FLAG. SEE DETAIL ON THIS SHEET.

PROVIDE 2 #8, #8(G) IN SITE TO LIGHT FIXTURE FROM CIRCUIT INDICATED. SITE TO NEW CIRCUIT PERMITS. PROVIDED AS PART OF ALTERNATE #1.

8 #5 BARS VERTICAL WITH 4 #3 TIES AT 12" O/C

FLAG POLE LIGHTING DETAIL

ELECTRICAL SITE PLAN - ALTERNATE #1
1 PROVIDE 2" CONDUIT FOR TELECOM CABLING.
2 PULL BOX PROVIDED AS CONSOLIDATION POINT FOR TV AND TELECOM CABLING CONDUITS. PROVIDE CONDUIT FROM PULL BOX TO INDIVIDUAL DEVICES.
3 PROVIDE 2" CONDUIT FOR TV CABLING.
4 MOUNT TO STRUCTURAL COLUMN AT 10'-0" AFF.
5 MOUNT 12"x12"x4" NEMA 3R ENCLOSURE TO BOTTOM OF STEEL BEAM.
6 1" CONDUIT BETWEEN WIFI ENCLOSURES, ATTACH CONDUIT TO BOTTOM FLANGE OF BEAM.
KEY NOTES

1. Use 3"C between east and west side of room.
2. Sump pump controller to be located in utility room.
3. Provide 1-1/2" main in elevator pit for sump pump.
4. Provide 2" conduit for telecom cables.
5. Pull box provided as connections for telecom and TV cables to keyboard.
6. Provide conduit for pull box to individual services.
7. Pull box provided as connection for telecom and TV cables to jacket.
8. Pull box provided as connection for telecom and TV cables to jacket.
9. Conduit up to utility room on level 3, think in roof. Coordination routing through utility room on level 2 is to access computer with elevator components.
10. Provide fuses for each point of control.
11. Provide for fuses for each point of control.
12. Door elements.
13. Door elements.
15. Door elements.
17. Door elements.
18. Door elements.
19. Door elements.
20. Door elements.

GENERAL NOTES

CONSTRUCTION DOCUMENTS

POWER/TELECOM PLAN

LEVEL 1
2) 4" C BETWEEN EAST AND WEST SIDE IT ROOMS.

3) PROVIDE 2" CONDUIT FOR TELECOM CABLING.

4) PULL BOX PROVIDED AS CONSOLIDATION POINT FOR TV AND TELECOM CABLING. PROVIDE CONDUIT FROM PULL BOX TO INDIVIDUAL DEVICES.

5) PROVIDE 2" CONDUIT FOR TV CABLING. PROVIDE 2" CONDUIT FOR TELECOM CABLING.

6) TAKE PORTION OF BLEACHERS PIVOT. DO NOT ROUTE CONDUITS UNDER THIS SECTION OF BLEACHERS.

7) MOUNT TO STRUCTURAL COLUMN AT 10'-0" AFF.

8) MOUNT 12"X12"X4" NEMA 3R ENCLOSURE TO BOTTOM OF STEEL BEAM. SEE DETAIL.

9) 1" CONDUIT BETWEEN WIFI ENCLOSURE BOXES. ATTACH CONDUIT TO BOTTOM FLANGE OF BEAM.

10) SUMP PUMP CONTROLLER TO BE LOCATED IN UTILITY W107.

11) 3" CONDUIT FROM IT ROOM ON LEVEL 3 TO WIFI ENCLOSURE BOXES UNDER NORTH END ZONE BLEACHERS.

12) 3" CONDUIT BELOW UNDERSIDE OF BLEACHERS TO LOWER LEVEL WIFI ENCLOSURE BOXES. SEE E101-6.
1. Mount to structural column at 10'-0" AFF.
2. Mount 12" x 12" x 4" NEMA 3R enclosure to bottom of steel beam.
3. Provide 1" conduit from WiFi enclosure to MEP box in press box tower.
4. Existing equipment to remain.
5. When equipment is relocated, extend existing conduit and conductors to new location. Match existing conduit and pull new cable in bulk. Quantity and type.

E-101-5
3. Mount to underside of existing bleacher structures.
4. Mount to back of existing building, locate 8" below rain eave.
5. 2" conduit on underside of bleachers.
6. 3" conduit on underside of bleachers between WiFi enclosure boxes.
7. Turn conduit up through level 2 floor adjacent to turn around box.
8. Conduit to upper level bleachers and back to IT room in pedestrian tunnel.
9. 2" conduit to WiFi enclosure boxes.
10. Turn conduit up through level 3 floor adjacent to turn around box.
11. Conduit to upper level bleachers and back to IT room.
12. 6" conduit on underside of bleachers between WiFi enclosure boxes.
13. 2.5" conduit on underside of bleachers between WiFi enclosure boxes.

POWER/TELCOM PLAN LEVEL 1

KEY NOTES

GENERAL NOTES

CONSTRUCTION DOCUMENTS

LOWE BLEACHER WIFI PLAN
(2) 2" C to 24 x 24 ENCLOSURE FOR TV / REPLAY CAMERAS.
(2) 4" C FOR FUTURE TV WIRING.
CONNECTION TO HEAT TAPE FOR DOMESTIC WATER PIPING.
POWER/TELCOM PLAN LEVEL 2

1. ELECTRIC DOOR HOLD SHALL TIE INTO FIRE ALARM SYSTEM.
2. COORDINATE MOUNTING HEIGHT WITH ARCHITECTURAL.
3. ELECTRIC DRAIN PIPING.
4. SEE E101 TO BELOW LOWER LEVEL BLEACHERS FOR WIFI CABLING.
5. 3" CONDUIT FROM IT ROOM DOWN THROUGH LEVEL 2 FLOOR PLANS.
6. (2) 4" C FOR FUTURE TV WIRING.
7. (2) 2" C FOR TV / REPLAY CAMERAS.
8. COORDINATE ROUTING OF CONDUIT WITH GENERAL NOTES.
9. MEASUREMENT AT 10" GHP.

GENERAL NOTES

COASTAL CAROLINA UNIVERSITY BROOKS STADIUM ADDITIONS PHASE 2

University Blvd, Conway, SC

Sheet No. E102-2

Scale: 1" = 20'

Sheet Title: POWER/TELCOM PLAN LEVEL 2

Key Plan

Sheet Number

Date of Issue

Additions

10/11/2017

Description

Rev No.

Seal / Signature

Design Phase

ENGINEERS

Drawing No.

No. C03649-00

Consulting

DWG.

Engineers

Rev.

No.

T A R O N

ENGINEERS

Project Number:

State Project Number:

No.

UNIVERSITY-

R O T A N

ENGINEERS

COASTAL-

R O T A N

ENGINEERS

9610

Coastal University Blvd, Conway, SC

State.

Advisory

To.

(386) 273-0245

To.

(386) 273-0245

To.

To.
CENTER-MEASURED DRIP Edge CONTINUOUSLY
MOUNTED DEPTH WITH ARCHITECTURAL DROPSHED.

1. ELECTRIC HEATERS SHALL BE WIRED THROUGH A MULTI-
POLE CONTACTOR AND CONTROLLED BY A SINGLE TOGGLE
SWITCH IN EXISTING ELECTRICAL ROOM ON LEVEL 1. SEE
DETAIL AND SHEET E101-2.

2. EXHAUST FANS SHALL BE WIRED THROUGH RELAY PANEL
AND LIGHTING CONTROL PANEL AND CONTROLLED BY
LIGHTING CONTROL STATION IN EXISTING ELECTRICAL
ROOM ON LEVEL 1. SEE DETAIL AND SHEET E101-2.

3. PROVIDE POWER CONNECTION TO RIBBON SCOREBOARD.
COORDINATE EXACT LOCATION WITH RIBBON
SCOREBOARD SUPPLIER.

4. PROVIDE FIBER OPTIC CONNECTION TO RIBBON
SCOREBOARD. FIBER OPTIC CABLE SHALL BE 6 STRAND, 50 MICRON, MULTIMODE.
KEY NOTES

1. 3" CONDUIT ON UNDERSIDE OF BLEACHERS.
2. 2" CONDUIT ON UNDERSIDE OF BLEACHERS BETWEEN WIFI ENCLOSURE BOXES.
3. 2" CONDUIT ON UNDERSIDE OF BLEACHERS BETWEEN WIFI ENCLOSURE BOXES.

GENERAL NOTES

DRAWING SHEET: 1/10=1'-0"

UPPER BLEACHER WIFI PLAN

UPPER STANDS WIFI PLAN

BAiley Scale 1/10=1'-0"

10/11/2017

29529

E103-4

UPPER STANDS WIFI PLAN - WEST

UPPER STANDS WIFI PLAN - EAST
ALL LEVEL 1 CONCOURSE EMERGENCY LIGHTING SHALL BE CONTROLLED THROUGH LIGHTING CONTROL PANEL. SEE SCALE: 1/8" = 1'-0" [E005].

CONSTRUCTION DOCUMENTS
E201-1
ALL LIGHT FIXTURES IN THIS ROOM ARE ON THE CIRCUIT NOTED.

1. MOUNT LIGHT FIXTURES 9" OFF TOP LANDING DIRECTLY BELOW LIGHT FIXTURE.

2. LIGHTING CONTROL, STAIR 1, CONNECTED TO LIGHTING CONTROL PANEL FOR CONTROL OF PUBLIC SPACE LIGHTS AND EXITWAY PAGE. SEE CONTROL SCHEMATIC ON SHEET E005.

3. STRAIGHT 2, STRAIGHT 3, AND EXITWAY SPECIFIC EMERGENCY LIGHTING WILL BE CONTROLLED THROUGH LIGHTING CONTROL PANEL. SEE CONTROL SCHEMATIC ON SHEET E005.

4. LIGHTING IN PUBLIC SPACES (RAMP, STAIR TOWERS, ALL LEVEL 1 CONCOURSE EMERGENCY LIGHTING) SHALL BE WIRED ON CIRCUIT EMH1W:17 THROUGH GENERATOR TRANSFER DEVICE. LIGHTING IN CONCOURSE WALKWAYS, AND RESTROOMS SHALL BE WIRED ON CIRCUIT EMH1W:18 THROUGH GENERATOR TRANSFER DEVICE.

5. LIGHTING CONTROL STATION CONNECTED TO LIGHTING BELOW LIGHT FIXTURE.

6. MOUNT LIGHT FIXTURES 8' ABOVE LANDING DIRECTLY ABOVE LIGHT FIXTURE.

7. DRAWINGS MAY NOT BE REPRODUCED WITHOUT PERMISSION.
LIGHTING PLAN LEVEL 1

1. All Level 1 corridors, emergency lighting shall be wired on circuit EMH1W:18 through generator transfer device.
2. All Level 1 corridors, emergency lighting not installed shall be on a specific emergency circuit EMH1W:17 through generator transfer device in lieu of lighting control panel.
3. All Level 1 non-concourse emergency lighting shall be controlled through lighting control panel. See control schematic on sheet E005.

Provide exit light with emergency battery backup and exit light on recessed bulkhead lighting circuit.
1. Extend existing circuit and controls wiring to each new light fixture.

2. Provide exit light with emergency battery backup.

3. Wire exit light on room's existing lighting circuit.

4. Extend existing circuit and controls wiring to each new light fixture under bleachers.
PROVIDE EXIT LIGHT WITH EMERGENCY BATTERY BACKUP.
WIRE EXIT LIGHT ON ROOMS EXISTING LIGHTING CIRCUIT.
1. ALL LEVEL 2 EMERGENCY LIGHTING NOT INDICATED TO BE ON A SPECIFIC EMERGENCY CIRCUIT SHALL BE WIRED ON CIRCUIT EMH1W:21 THROUGH GENERATOR TRANSFER DEVICE.

2. ALL LIGHTS IN PUBLIC SPACES (RAMP, STAIR TOWERS, CONCOURSE WALKWAYS, OPEN AREAS ON EITHER SIDE OF CLUB, AND RESTROOMS) SHALL BE CONTROLLED THROUGH LIGHTING CONTROL PANEL. SEE CONTROL SCHEMATIC ON SHEET E005.

3. LIGHTS SERVING MULTI-STORY RAMP SWITCHED FROM SWITCH ON LEVEL 1.

4. LIGHTS SWITCHED FROM MANUAL SWITCH ON THIS LEVEL.

KEY NOTES:

- Lights serving multi-story ramp switched from switch on level 1.
- Lights switched from manual switch on this level.

GENERAL NOTES:

1. All Level 2 emergency lighting not indicated to be on a specific emergency circuit shall be wired on circuit EMH1W:21 through generator transfer device.
2. All lights in public spaces (ramp, stair towers, concourse walkways, open areas on either side of club, and restrooms) shall be controlled through lighting control panel. See control schematic on sheet E005.
3. Lights serving multi-story ramp switched from switch on level 1.
4. Lights switched from manual switch on this level.

CONSTRUCTION DOCUMENTS:

- Scale: 1/8" = 1'-0"
- Sheet Title: LIGHTING PLAN LEVEL 2
- Sheet Number: E202-1
- Date: 10/11/2017

COASTAL CAROLINA UNIVERSITY BROOKS STADIUM ADDITIONS PHASE 2

University Blvd, Conway, SC

E202-1 LIGHTING PLAN LEVEL 2

1/8" = 1'-0"
ALL LIGHT FIXTURES IN STAIR TOWER ARE CONTROLLED FROM SWITCHES ON LEVEL 1.

ALL LIGHT FIXTURES IN THIS ROOM ARE ON THE CIRCUIT NOTED.

SOME CIRCUIT NOTED.

ALL LIGHT FIXTURES IN THIS ROOM ARE ON THE CIRCUIT NOTED.

ALL LIGHT FIXTURES IN THIS ROOM ARE ON THE CIRCUIT NOTED.

ELEV. 2 BALCONY LIGHTING PLAN LEVEL 2

FUTURE

E202, 203, 204, 205, 206, 207, 208, 209, 210, 211

LIGHTING PLAN LEVEL 2
1. All Level 2 Emergency Lights not indicated to be on a specific Emergency Circuit Panel, shall be wired on Circuit EMH1W:21 through Generator Transfer Device.

2. All lights in public spaces (ramp, stair towers, concourse walkways, open areas on either side of club, and restrooms) shall be controlled through lighting control panel. See control schematic on sheet E005.
1. All Level 3 Concourse Emergency Lighting shall be wired on Circuit EMH1W:13 through Generator Transfer Device.

2. All Level 3 non-Concourse Emergency Lighting not indicated to be on a specific emergency circuit shall be wired on Circuit EMH1W:14 through Generator Transfer Device.

3. All lights in public spaces (ramp, stair towers, concourse walkways, and restrooms) shall be controlled through lighting control panels. See control schematics on sheet E005.
ALL LIGHT FIXTURES IN THIS ROOM ARE ON THE CIRCUIT EMH1W:16.

MOUNT LIGHT FIXTURES 8' 7" ABOVE LANDING DIRECTLY ABOVE LANDING FIXTURE.

STAIR 2

STAIR 3

SCALE: 1/8" = 1'-0" E203-2

CONSTRUCTION DOCUMENTS

10/11/2017

E203-2
ALL LIGHT FIXTURES IN THIS ROOM ARE ON THE CIRCUIT.
SLOOR LIGHT FIXTURES 8' ABOVE LANDING DIRECTLY ABOVE LIGHT FIXTURE.
MOUNT LIGHT FIXTURES 8' ABOVE LANDING DIRECTLY MOUNT LIGHT FIXTURE.
1. Route new fire alarm conduit along underside of structure and above existing and new ceilings. Conduit shall be perpendicular and parallel to structural members.

2. Coordinate layout of new ceiling mounted items. Adjust layout a max of 5'-0" from location shown if necessary to avoid existing ceiling mounted items.

3. Coordinate exact quantity and location of pressure and tamper switches with fire suppression shop drawings.

4. Two-way communications surface mounted base station.
1. Route new fire alarm conduit along underside of structure and inside existing and new ceilings. Conduit shall be perpendicular and parallel to structural members.

2. Coordinate layout of new ceiling mounted items. Adjust layout a max of 5'-0" from location shown if necessary to avoid existing ceiling mounted items.

3. Connect smoke detectors at stair tower doors to magnetic door hold open devices and fire alarm control panel.

4. Relocate existing ceiling mounted speaker strobes from demolished gang restroom to new gang restroom. Extend existing fire alarm circuit and conduit as required.
1. Route new fire alarm conduit along underside of structure and inside existing and new ceilings. Conduit shall be perpendicular and parallel to structural members.

2. Coordinate layout of new ceiling mounted items. Adjust layout a max of 5'-0" from location shown if necessary to avoid existing ceiling mounted items.

3. Connect smoke detectors at stair tower doors to magnetic door hold open devices and fire alarm control panel.
1. Route new fire alarm conduit along underside of structure and/or existing finished ceilings. Conduit shall be perpendicular and parallel to structural members.

2. Coordinate layout of new ceiling mounted items. Adjust layout a maximum of 5'-0" from location shown if necessary to avoid existing ceiling mounted items.
1. ROUTE FIRE ALARM CONDUIT ALONG UNDERSIDE OF STRUCTURE AND PARALLEL TO EXISTING AND NEW CEILINGS. CONDUIT SHALL BE PERPENDICULAR AND PARALLEL TO STRUCTURAL MEMBERS.

2. COORDINATE LAYOUT OF NEW CEILING MOUNTED ITEMS. ADJUST LAYOUT A MAX OF 5'-0" FROM LOCATION SHOWN IF NECESSARY TO AVOID EXISTING CEILING MOUNTED TRIM.
1. Route new fire alarm conduit along underside of structure for fuel and above existing and new ceilings. Conduit shall be perpendicular and parallel to structural members.
2. Coordinate layout of new ceiling mounted items. Adjust layout a max of 5'-0" from location shown if necessary to avoid existing ceiling mounted items.
3. Locate supply air ductwork.
4. Locate return air ductwork.

Scale: 1/8" = 1'-0"
1. ROUTE NEW FIRE ALARM CONDUIT ALONG UNDERSIDE OF STRUCTURAL MEMBERS AND ABOVE EXISTING CEILINGS.

2. COORDINATE LAYOUT OF NEW CEILING MOUNTED ITEMS.

3. CONNECT SMOKE DETECTORS AT STAIR TOWER DOORS TO MAGNETIC DOOR HOLD OPEN DEVICES AND FIRE ALARM CONTROL PANEL.

GENERAL NOTES:

1. DEVICE SHALL BE RATED FOR EXTERIOR APPLICATIONS.

2. REQUIRED TWO WAY CALL SYSTEM CALL STATION.

CONSTRUCTION DOCUMENTS:

10/11/2017 | SCALE: 1/8" = 1'-0" | SYSTEMS PLAN LEVEL 2

COASTAL CAROLINA UNIVERSITY | BROOKS STADIUM ADDITIONS | PHASE 2
University Blvd, Conway, SC |

DRAWN BY: | REVISIONS: | PHASE DATE OF ISSUE:

PROJECT NUMBER: | SHEET NUMBER: | DESCRIPTION DATE REV NO.

SCALE GRAPHIC | E302-2
1. Locate new fire alarm conduit along underside of structure and above existing and new ceilings. Conduit shall be perpendicular and parallel to structural members.

2. Coordinate layout of new ceiling mounted items. Adjust layout a max of 5'-0" from location shown if necessary to avoid existing ceiling mounted items.

3. Connect smoke detectors at stair tower doors to magnetic door hold open devices and fire alarm control panel.
1. Route new fire alarm conduit along underside of structure and above existing and new ceilings. New conduit shall be perpendicular and parallel to structural members.

2. Coordinate layout of new ceiling mounted items. Adjust layout a max of 5'-0" from location shown if necessary to avoid existing ceiling mounted items.
1. Route new fire alarm conduit along underside of structure and parallel to interior structural members. Route new fire alarm conduit along the underside of new ceiling mounted fire sprinkler piping and above existing and new ceilings. Conduit shall be perpendicular and parallel to structural members.

2. Coordinate layout of new ceiling mounted items. Adjust layout a max of 5'-0" from location shown if necessary to avoid existing ceiling mounted items.

3. Connect smoke detectors at stair tower doors to magnetic door hold open devices and fire alarm control panel.
1. Route new fire alarm conduit along underside of structure and over existing and new ceilings. Conduit shall be perpendicular and parallel to structural members.

2. Coordinate layout of new ceiling mounted items. Adjust layout a max of 5'-0" from location shown if necessary to avoid existing ceiling mounted items.

3. Connect smoke detectors at stair tower doors to magnetic door hold open devices and fire alarm control panel.
ELECTRIC HEATERS SHALL BE WIRED THROUGH A MULTIPLE CONDUCTOR AND CONTROLLED BY A SINGLE CIRCUIT BREAKER.

CIRCUIT BREAKER LOCALES ON ROOF OF CONcessions BUILDINGS.

KITCHEN ELECTRICAL PLAN

LEVEL 01 NE CONCESSION ELECTRICAL PLAN

LEVEL 01 NW CONCESSION ELECTRICAL PLAN

GENERAL NOTES

KEY NOTES

1. ELECTRIC HEATERS SHALL BE WIRED THROUGH A MULTIPLE CONDUCTOR AND CONTROLLED BY A SINGLE CIRCUIT BREAKER.
2. CIRCUIT BREAKERS LOCATED ON ROOF OF CONCESSIONS BUILDINGS.
ELECTRIC HEATERS SHALL BE WIRED THROUGH A MULTIPLE POUR CONDUCTOR AND CONTROLLED BY A VOLUME THERMOSTAT. SEE DETAIL.