STAT 201 - Final Exam Review Sheet

I. Confidence Intervals $PE \pm MULT \times SE$

(Proportions use z^* ; means use t^*)

Parameter to Estimate	PE	Multipler	SE
p (one proportion)	\widehat{p}	$z^* = \text{invnorm}()$	$\sqrt{rac{\widehat{p}(1-\widehat{p})}{n}}$
$p_1 - p_2$ (two proportions)	$\widehat{p}_1 - \widehat{p}_2$	$z^* = \text{invnorm}()$	$\sqrt{\frac{\hat{p_1}(1-\hat{p_1})}{n_1} + \frac{\hat{p_2}(1-\hat{p_2})}{n_2}}$
μ (one mean)	\bar{x}	$t^* = \text{invT}(,df)$ (or use table)	s/\sqrt{n}
$\mu_1 - \mu_2$ (two means)	$\bar{x_1} - \bar{x}_2$	$t^* = \text{invT}(,df)$ (or use table)	$\sqrt{rac{s_1^2}{n_1} + rac{s_2^2}{n_2}}$

Comments:

- Interpretation: We are $\underline{xx\%}$ confident that the population parameter is between PE-MOE and PE+MOE.
- If H_0 is in the confidence interval, there is little to no evidence for H_A .
- If H_0 is not in the confidence, there is evidence for H_A .

STAT 201: Summary Sheet

2

II. Hypothesis Tests

1. State the Hypotheses

Always in terms of parameters; data never goes in hypotheses

Parameter	Null Hypothesis	Alternative Hypothesis
p (one proportion)	$H_0: p = p_0$	$H_A: p <,>, \neq p_0$
p_1 vs. p_2 (two proportions)	$H_0: p_1 = p_2 H_0: p_1 - p_2 = 0$	$H_A: p_1 <, >, \neq p_2$ $H_A: p_1 - p_2 <, >, \neq 0$
μ (one mean)	$H_0: \mu = \mu_0$	$H_A: \mu <, >, \neq \mu_0$
μ_1 vs. p_2 (two means)	$H_0: \mu_1 = \mu_2 H_0: \mu_1 - \mu_2 = 0$	$H_A: \mu_1 <, >, \neq \mu_2$ $H_A: \mu_1 - \mu_2 <, >, \neq 0$

2. Calculate the Test Statistic

Tells us how far the data is from the initial assumption in H_0 . In the form of Test Stat. = $\frac{data-null}{SE}$; proportions z_c ; means t_c

Parameter	Test Statistic
p (one proportion)	$z_c = \frac{\widehat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}$
p_1 vs. p_2 (two proportions)	$z_c = \frac{(\hat{p_1} - \hat{p_2}) - 0}{\sqrt{\hat{p}(1 - \hat{p})(\frac{1}{n_1} + \frac{1}{n_2})}}$
μ (one mean)	$t_c = \frac{1}{\sqrt{\widehat{p}(1-\widehat{p})\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$ $t_c = \frac{\overline{x} - \mu_0}{\left(s/\sqrt{n}\right)}$
μ_1 vs. p_2 (two means)	$t_c = \frac{(\bar{x}_1 - \bar{x}_2) - 0}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$

3. Calculate the P-value

Tells us the probability of seeing our data/test statistic under the null hypothesis; Find area according to H_A ; it is a probability so answers should always be between zero and one; means use tcdf(lwr, upr, df), proportions use normalcdf(lwr, upr).

4. Interpret the P-value

"If $\underline{H_0}$ is true, we would see data like ours, or more extreme, $p-value \times 100\%$ of the time."

5. State the conclusion.

"There is _____ evidence for H_A "

- $p > 0.10 \rightarrow$ "Little to no"
- 0.05 "Some"
- 0.01 "Strong"
- $p < 0.01 \rightarrow$ "Very strong"

Comments:

- If there is little to no evidence for H_A , then H_0 is still in the confidence interval.
- If there is a degree of evidence for H_A , then H_0 is not in the confidence interval.

STAT 201: Summary Sheet

III. Binomial Distribution

 $X = \text{number of successes in } n \text{ trials, } X \sim Binomial(n, p)$

Criteria for a Binomial distribution

- Binary outcomes (success/failure)
- Independent trials (ex. random sample?)
- Number of trials fixed (n = ?)
- Same probability of success (p = ?)

Mean and Standard Deviation

- $\bullet \ \mu = np$
- $\sigma = \sqrt{np(1-p)}$

Finding probabilities

- $P(X = k) = binom \mathbf{p}df(n, p, k)$
- $P(X \le k) = \text{binom} \mathbf{c} df(n, p, k)$

IV.Test for Outliers

- Five number summary: min, Q_1 , M, Q_3 , max
- $IQR = Q_3 Q1$
- $step = 1.5 \times IQR$
- $LF = Q_1 step$
- $UF = Q_3 + step$
- Any observations beyond LF, UP are outliers

V. Correlation and Regression

Properties of Correlation

- r has no units and does not imply causation
- measures strength of linear relationships between two quantitative variables
- r = -1 implies perfect line with negative slope
- r = +1 implies perfect line with positive slope

Regression Calculations

- \bullet y = response; the variable we wish to estimate or predict
- x = explanatory variable; the variable that influences the response
- Slope: $b = r(s_y/s_x)$
- Intercept: $a = \bar{y} b\bar{x}$
- LSR Line: $\hat{y} = a + bx$
- Residual: $e = y \hat{y}$ (observed predicted y)
- Coefficient of determination: r^2 = proportion of variation in y explained by the line

Interpretations

- Slope: As $\underline{\mathbf{x}}$ increases by one $\underline{\mathbf{unit}}$, the predicted $\underline{\mathbf{y}}$ increases by slope units.
- Intercept: When $\underline{\mathbf{x}}$ is zero, the predicted y is intercept units.

STAT 201: Summary Sheet

VI. Probability

General Formulas

Key Word	Formula
NOT	$P(A^c) = 1 - P(A)$
OR	$P(A \cup B) = P(A) + P(B) - P(A \cap B)$
OR	$P(A \cup B) = P(A) + P(B)$ (Special case: Disjoint)
AND	$P(A \cap B) = P(A) \times P(B)$ (Special case: Independent)
AND	$P(A \cap B) = P(A B)P(B) = P(A)P(B A)$
GIVEN	$P(A B) = P(A \cap B)/P(B)$

Tests for Independence

If the two sides are equal, then the events are independent. If unequal, then dependent.

Choose any of the three formulas to test.

- $P(A \cap B) = P(A) \times P(B)$
- $\bullet \ P(A|B) = P(A)$
- $\bullet \ P(B|A) = P(B)$

Test for Disjointedness

If $P(A \cap B) = 0$, the events are disjoint.

VII. Sampling Distributions

Sampling distributions of means

• For $n \geq 30$, the sampling distribution of the sample mean is

$$\bar{x} \sim N\left(\mu, \sigma/\sqrt{n}\right)$$

4

• To find probabilities related to \bar{x} , the corresponding z-score is

$$z = \frac{\bar{x} - \mu}{\sigma / \sqrt{n}}$$

then use normalcdf() accordingly to find the probability

Sampling distributions of proportions

• For $np \ge 10$ and $n(1-p) \ge 10$, the sampling distribution of the sample proportion is

$$\widehat{p} \sim N\left(p, \sqrt{\frac{p(1-p)}{n}}\right)$$

• To find probabilities related to \hat{p} , the corresponding z-score is

$$z = \frac{\widehat{p} - p}{\sqrt{\frac{p(1-p)}{n}}}$$

then use normalcdf() accordingly to find the probability