STAT 201 - Final Exam Review Sheet

I. Confidence Intervals $P E \pm M U L T \times S E$
(Proportions use $z^{*} ;$ means use t^{*})

Parameter to Estimate	PE	Multipler	SE
p (one proportion)	\widehat{p}	$z^{*}=\operatorname{invnorm}()$	$\sqrt{\frac{\widehat{\hat{p}}(1-\widehat{p})}{n}}$
$p_{1}-p_{2}$ (two proportions)	$\widehat{p}_{1}-\widehat{p}_{2}$	$z^{*}=$ invnorm()	$\sqrt{\frac{\widehat{p_{1}}\left(1-\widehat{p_{1}}\right)}{n_{1}}+\frac{\widehat{p_{2}}\left(1-\widehat{p_{2}}\right)}{n_{2}}}$
μ (one mean)	\bar{x}	$\begin{gathered} t^{*}=\operatorname{invT}(, \mathrm{df}) \\ (\text { or use table) } \end{gathered}$	s / \sqrt{n}
$\mu_{1}-\mu_{2}$ (two means)	$\overline{x_{1}}-\bar{x}_{2}$	$\begin{gathered} t^{*}=\operatorname{invT}(, \mathrm{df}) \\ (\text { or use table) } \end{gathered}$	$\sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}$

Comments:

- Interpretation: We are $\mathrm{xx} \%$ confident that the population parameter is between $\underline{P E-M O E}$ and $\underline{P E+M O E}$.
- If H_{0} is in the confidence interval, there is little to no evidence for H_{A}.
- If H_{0} is not in the confidence, there is evidence for H_{A}.

II. Hypothesis Tests

1. State the Hypotheses

Always in terms of parameters; data never goes in hypotheses

Parameter	Null Hypothesis	Alternative Hypothesis
p (one proportion)	$H_{0}: p=p_{0}$	$H_{A}: p<,>, \neq p_{0}$
p_{1} vs. p_{2} (two proportions)	$H_{0}: p_{1}=p_{2}$	$H_{A}: p_{1}<,>, \neq p_{2}$
	$H_{0}: p_{1}-p_{2}=0$	$H_{A}: p_{1}-p_{2},>,>, \neq 0$
μ (one mean)	$H_{0}: \mu=\mu_{0}$	$H_{A}: \mu<,>, \neq \mu_{0}$
	$H_{0}: \mu_{1}=\mu_{2}$	$H_{A}: \mu_{1}<,>, \neq \mu_{2}$
μ_{1} vs. p_{2} (two means)	$H_{0}: \mu_{1}-\mu_{2}=0$	$H_{A}: \mu_{1}-\mu_{2}<,>, \neq 0$

2. Calculate the Test Statistic

Tells us how far the data is from the initial assumption in H_{0}. In the form of Test Stat. $=\frac{\text { data-null }}{S E} ;$ proportions z_{c}; means t_{c}

Parameter	Test Statistic
p (one proportion)	$z_{c}=\frac{\widehat{p}-p_{0}}{\sqrt{\frac{p_{0}\left(1-p_{0}\right)}{n}}}$
p_{1} vs. p_{2} (two proportions)	$z_{c}=\frac{\left(\widehat{p_{1}}-\widehat{p_{2}}\right)-0}{\sqrt{\widehat{p}\left(1-\widehat{p}\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)\right.}}$
μ (one mean)	$t_{c}=\frac{\bar{x}-\mu_{0}}{(s / \sqrt{n})}$
μ_{1} vs. p_{2} (two means)	$t_{c}=\frac{\left(\bar{x}_{1}-\bar{x}_{2}\right)-0}{\sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}}$

3. Calculate the P-value

Tells us the probability of seeing our data/test statistic under the null hypothesis; Find area according to H_{A}; it is a probability so answers should always be between zero and one; means use tcdf(lwr,upr, $d f$), proportions use normalcdf(lwr, upr).

4. Interpret the P -value

"If H_{0} is true, we would see data like ours, or more extreme, $\underline{p-v a l u e} \times 100 \%$ of the time."

5. State the conclusion.

"There is \qquad evidence for $\underline{H}_{A} "$

- $p>0.10 \rightarrow$ "Little to no"
- $0.05<p<0.10 \rightarrow$ "Some"
- $0.01<p<0.05 \rightarrow$ "Strong"
- $p<0.01 \rightarrow$ "Very strong"

Comments:

- If there is little to no evidence for H_{A}, then H_{0} is still in the confidence interval.
- If there is a degree of evidence for H_{A}, then H_{0} is not in the confidence interval.

III. Binomial Distribution

$X=$ number of successes in n trials, $X \sim \operatorname{Binomial}(n, p)$
Criteria for a Binomial distribution

- Binary outcomes (success/failure)
- Independent trials (ex. random sample?)
- Number of trials fixed $(n=?)$
- Same probability of success $(p=?)$

Mean and Standard Deviation

- $\mu=n p$
- $\sigma=\sqrt{n p(1-p)}$
$\underline{\text { Finding probabilities }}$
- $P(X=k)=\operatorname{binompdf}(\mathrm{n}, \mathrm{p}, \mathrm{k})$
- $P(X \leq k)=\operatorname{binomcdf}(\mathrm{n}, \mathrm{p}, \mathrm{k})$

IV.Test for Outliers

- Five number summary: $\min , Q_{1}, \mathrm{M}, Q_{3}, \max$
- $I Q R=Q_{3}-Q 1$
- step $=1.5 \times I Q R$
- $L F=Q_{1}-$ step
- $U F=Q_{3}+$ step
- Any observations beyond LF, UP are outliers

V. Correlation and Regression

Properties of Correlation

- r has no units and does not imply causation
- measures strength of linear relationships between two quantitative variables
- $r=-1$ implies perfect line with negative slope
- $r=+1$ implies perfect line with positive slope
$\underline{\text { Regression Calculations }}$
- $y=$ response; the variable we wish to estimate or predict
- $x=$ explanatory variable; the variable that influences the response
- Slope: $b=r\left(s_{y} / s_{x}\right)$
- Intercept: $a=\bar{y}-b \bar{x}$
- LSR Line: $\widehat{y}=a+b x$
- Residual: $e=y-\widehat{y}$ (observed - predicted y)
- Coefficient of determination: $r^{2}=$ proportion of variation in y explained by the line
$\underline{\text { Interpretations }}$
- Slope: As \underline{x} increases by one $\underline{u n i t}$, the predicted \underline{y} increases by slope units.
- Intercept: When \underline{x} is zero, the predicted \underline{y} is intercept units.

VI. Probability

General Formulas

Key Word	Formula
NOT	$P\left(A^{c}\right)=1-P(A)$
OR	$P(A \cup B)=P(A)+P(B)-P(A \cap B)$
OR	$P(A \cup B)=P(A)+P(B)$ (Special case: Disjoint)
AND	$P(A \cap B)=P(A) \times P(B)$ (Special case: Independent)
AND	$P(A \cap B)=P(A \mid B) P(B)=P(A) P(B \mid A)$
GIVEN	$P(A \mid B)=P(A \cap B) / P(B)$

Tests for Independence

If the two sides are equal, then the events are independent. If unequal, then dependent.
Choose any of the three formulas to test.

- $P(A \cap B)=P(A) \times P(B)$
- $P(A \mid B)=P(A)$
- $P(B \mid A)=P(B)$

Test for Disjointedness

If $P(A \cap B)=0$, the events are disjoint.

VII. Sampling Distributions

Sampling distributions of means

- For $n \geq 30$, the sampling distribution of the sample mean is

$$
\bar{x} \sim N(\mu, \sigma / \sqrt{n})
$$

- To find probabilities related to \bar{x}, the corresponding z-score is

$$
z=\frac{\bar{x}-\mu}{\sigma / \sqrt{n}}
$$

then use normalcdf () accordingly to find the probability

Sampling distributions of proportions

- For $n p \geq 10$ and $n(1-p) \geq 10$, the sampling distribution of the sample proportion is

$$
\widehat{p} \sim N\left(p, \sqrt{\frac{p(1-p)}{n}}\right)
$$

- To find probabilities related to \widehat{p}, the corresponding z-score is

$$
z=\frac{\widehat{p}-p}{\sqrt{\frac{p(1-p)}{n}}}
$$

then use normalcdf () accordingly to find the probability

