Coastal Carolina University- Spadoni College of Education \& Social Sciences Assessment \# 4-MAT Mathematics (NCTM) Internship Evaluation

Form Completed by (\square) University Supervisor; (\square) Cooperating Teacher

Intern:

School Site:

Cooperating Teacher:

University Supervisor:
Evaluation Date:
Milestone: (\square) Formative \square Summative
CCU ID:

Grade/Subject:

Evaluation Date:

Unacceptable -0 points Does not meet expectations of a beginning teacher	Proficient - $\mathbf{1}$ points Meets expectations of a beginning teacher	Exemplary $\mathbf{- 2}$ points Far exceeds expectations of a beginning teacher

NCTM Internship Evaluation Mathematics SPA Specific Standards

NCTM CAEP 2020 Alignment	Unacceptable (0)	Proficient (1)	Exemplary (2)

K4.1 Use problem solving to develop conceptual understanding, and procedural fluency 2a 4f	Use of problem-solving to develop conceptual understanding is limited or unclear. \square	Mathematical activities and investigations use problem-solving strategies to develop a conceptual understanding with limited development of procedural fluency. \square	Mathematical activities and investigations allow students to use problem-solving steps and strategies to develop a conceptual understanding with concrete steps for procedural fluency.
K4.2 Problemsolving activities for engagement and connection 2a	Unit Plan does not include opportunities for students to be engaged in problem-solving activities or the activities only include context within the field! Of mathematics.	Unit Plan includes opportunities for students to participate in problemsolving activities within the field of mathematics. The candidate illustrates (provides) examples of connections to real-world contexts.	Unit Plan includes opportunities for students to be engaged in problemsolving activities within the field of mathematics and make connections to real-world contexts. \square
K4.3 Problem- solving strategies for understanding and perseverance 2a	Communication of problem-solving strategies is limited or unclear. It does not encourage students to make sense of problems and persevere in solving them.	It encourages various problem-solving strategies and students to make sense of problems and persevere in solving them but does not showcase students' strategies. \square	It creates opportunities to showcase a variety of students' problem-solving strategies and encourages students to make sense of problems and persevere in solving them.
K4.4 Formulate and test conjectures generalization 2c	Do not design experiences that allow students to formulate and test conjectures to frame generalizations.	Unit Plan includes limited mathematical models (e.g., manipulative, graphing, tech tools) that allow for student discovery but lacks the proper foundation for students to frame generalizations. \square	Unit Plan includes various mathematical models (e.g., manipulative, graphing, tech tools) that allow students to formulate and test conjectures to frame generalizations. \square

K4.5 Reasoning and Communicating 2b	Communicates mathematical reasoning using inappropriate strategies or flawed arguments that are vague or imprecise.	Communicate mathematical reasoning with clarity, precision, and logical order.	Reason abstractly, reflectively, and quantitatively with attention to units, constructing viable arguments and proofs.		
K4.6 Math modeling and applications	Neither represents nor models generalizations using mathematics.	Represent and model generalizations using mathematics while recognizing mathematical reasoning patterns.	Represent and model generalizations using mathematics while providing opportunities for students to recognize mathematical reasoning patterns.		
2c	\square	\square	\square	\quad	\square
:---					

math models 2c			
K4.10 Design experiences for students to analyze and interpret math models 2c	Does not recognize or represent that mathematical models are derived from variety of real world contexts. \square	Motivates or illustrates the analysis and interpretation of mathematical models derived from a variety of rea- world contexts. \square	Designs experiences that allow students to analyze and interpret mathematical models derived from a variety of realworld contexts to build mathematical understanding.
K4.11 Adequate reasoning and communication for express math ideas 2b	Mathematical thinking is not organized, and mathematical ideas are imprecise. \square	Organizes mathematical thinking and uses the language of mathematics to express ideas precisely. \square	Organizes mathematical thinking and uses the language of mathematics to express ideas precisely to multiple audiences.
K4.12 Learning engagement and communication based on math standards 4a	Goals of instruction are vague, unclear, or not quite appropriate. \square	Instruction shows knowledge of and clearly communicates student learning outcomes based on state mathematics standards. \square	Instruction engages students in developmentally appropriate mathematical investigations and clearly communicates student-learning outcomes based on state mathematics standards. \square
K4.13 Plan and engagement differentiated for diversity	Lesson plans do not include a variety of instructional strategies.	Lesson plans include more than one mathematics appropriate instructional strategy that could be differentiated for diverse	Lesson plans include a variety of mathematics-appropriate instructional strategies differentiated for diverse populations.

\begin{tabular}{|c|c|c|c|}
\hline 3 a \& \& \& \\
\hline \begin{tabular}{l}
K4.14 Develop \\
students' conceptual understanding and procedural proficiency \(4 f\) 4c
\end{tabular} \& Lesson plans inappropriately. Incorporate mathematics-specific technology or fails to build students' conceptual understanding and procedural proficiency. \& Lesson plans appropriately. Incorporate mathematics-specific technology to build students' conceptual understanding and procedural proficiency. \& Lesson plans appropriately incorporate mathematics-specific technologies to build all students' conceptual understanding and procedural proficiency effectively. \\
\hline K4.15 Assessing students' learning with adequate models and various strategies 5a \& \begin{tabular}{l}
Assessments do not measure student proficiencies associated with the student learning outcomes. \\
OR \\
Assessments focus on student recall of facts and algorithms with no evidence of interest in understanding how students think about mathematics and skew the level of thinking and difficulty.
\(\square\)
\end{tabular} \& \begin{tabular}{l}
The candidate designs (selects or modifies) both formative and summative assessments to effectively measure student proficiencies associated with all student-learning outcomes. \\
Assessments focus on understanding how students think about mathematics but with limited strategies or skewed about the level of thinking or difficulty.

 \&

The candidate designs (selects or modifies)both formative and summative assessments to effectively measure student proficiencies associated with all student-learning outcomes.

Assessments include a variety of strategies focusing on understanding the ways students think about mathematics as well as varying levels of thinking and difficulty.

\end{tabular}

\hline | K4.16 |
| :--- |
| Demonstrate the use of assessment data to modify instruction 5c | \& Post observation conference: Candidate is unable to describe how assessment results were used to inform instruction.

\square \& Post observation conference: The candidate can generically' describe how assessment results were used to inform instruction.
\square \& Post observation conference: The candidate can describe how assessment results were used to inform instruction, including specific examples.

\hline
\end{tabular}

K4.17 Challenge all students with development appropriate learning activities 3a	Lesson plans do not create challenging learning opportunities or are not developmentally appropriate for mathematics. \square	Lesson plans create learning opportunities that are developmentally appropriate, and challenging for all mathematics learners. \square	Lesson plans create challenging learning opportunities that are developmentally appropriate and challenging for all mathematics learners where students are actively engaged.
K4.18 Teaching activities plans are sequenced and grounded in mathematics education research	Lesson plans are not grounded in mathematics education research. \square	Lesson plans are sequenced and grounded in mathematics education research and instruction models.	Lesson plans are sequenced and grounded in mathematics education research in which students are actively engaged.
K4.19 Use student prior knowledge and experiences (mathematical strengths) to build new math knowledge 3b	Lesson plans do not build new knowledge from prior mathematics knowledge and experiences (e.g., mathematical strengths). \square	Lesson plans build new knowledge from prior mathematics knowledge and experiences (e.g., mathematical strengths).	Lesson plans actively engage students in building new mathematics knowledge from prior knowledge and experiences (e.g., mathematical strengths).
K4.20 Promote equitable learning environments 6a	No evidence of equitable and ethical treatment of and high expectations for all students. \square	Equitable and ethical treatment of and high expectations for all students are demonstrated during lessons or observed by cooperating teacher during the internship.	Equitable and ethical treatment of and high expectations for all students are demonstrated during lessons and observed by cooperating teacher during the internship. \square

K4.21 Select adequate math-specific tools for teaching and learning 4c	No attempt to use mathematical instructional tools and no reasonable explanation why the limitations of the tools do not enhance learning.	The unit clearly describes how the instructional tools will be used to enhance teaching and learning.	The unit clearly describes how the instructional tools will be used to enhance teaching and learning, recognizing both the insights to be gained and the possible limitations of
such tools.			

\begin{tabular}{|c|c|c|c|}
\hline catching math concepts 4c \& an explanation for lack of use is not based on sound pedagogy. \& \& objective and to investigate mathematics concepts.
\(\square\) \\
\hline K4.25 Analyzing and informing students' progress 5b \& The candidate does not collect, organize, analyze, and reflect on diagnostic, formative, and summative assessment data. \& The candidate collects, organizes, analyzes, and reflects diagnostic, formative, and summative assessment data. \& \begin{tabular}{l}
The candidate collects, organizes, analyzes, and reflects diagnostic, formative, and summative assessment data. \\
The candidate checks and informs the progress of the individual student, subgroup students, and the class as a whole.
\(\square\)
\end{tabular} \\
\hline K4.26 Use assessment for modifying instruction 5c \& \begin{tabular}{l}
The candidate does not determine the extent to which students' math proficiencies have increased due to their instruction. \\
Or \\
The candidate do not use assessment results to design and modify his/her instruction to meet most students' needs in a whole class.
\end{tabular} \& \begin{tabular}{l}
The candidate determines the extent to which students' math proficiencies have increased due to their instruction and the extent to which they made progress. \\
The candidate uses assessment results to design and modify his/her instruction to meet most students' needs in a whole class.

 \&

The candidate determines the extent to which students' math proficiencies have increased due to their instruction.

The candidate uses assessment results to design and modify his/her instruction to meet a whole class, group, and individual needs and increase student performance.
\square
\end{tabular}

\hline | K4.27 |
| :--- |
| Implement positive mathematical identities 3c | \& Observations do not provide evidence that the candidate has developed the knowledge, skills, or professional behaviors necessary to examine the nature of mathematics, how mathematics should be taught, and how students learn mathematics. \& Observations provide evidence that the candidate has developed the knowledge, skills, or professional behaviors necessary to examine the nature of mathematics, how mathematics should be taught, and how students learn mathematics. \& Observations provide evidence that the candidate has developed the knowledge, skills, or professional behaviors necessary to examine the nature of mathematics, how mathematics should be taught, and how students learn mathematics.

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline \& \& \[
\square
\] \& Evidence documents' specific ways in which candidate has drawn upon research in mathematics education and professional development to inform practice. \\
\hline \begin{tabular}{l}
K4.28 \\
Seeking collaborations with colleagues 6d
\end{tabular} \& The candidate identifies potential collaboration or professional learning opportunities that focus on learning and teaching in mathematics education.
\(\square\) \& \begin{tabular}{l}
The candidate collaborates with colleagues (cooperating teachers, peers, and university supervisors)to support student learning of mathematics. \\
The candidate participates in professional development and/or learning communities that focus on learning and teaching in mathematics education.
\end{tabular} \& \begin{tabular}{l}
The candidate collaborates with colleagues (cooperating teachers, peers, and university supervisors) to support student learning of mathematics. \\
The candidate participates in professional development and/or learning communities that focus on learning and teaching in mathematics education. \\
The candidate participates in professional development opportunities based on targeted professional learning needs.

\end{tabular}

\hline
\end{tabular}

K4.29 Engage families and communities $\mathbf{6 c}$	The candidate communicates information to families about mathematical ideas and processes.	The candidate communicates with families about the mathematical ideas and princesses that students are exploring, suggests good mathematics resources, and provides opportunities for the candidate and families to discuss strategies for ensuring the mathematical success of their students.	The candidate communicates with families about the mathematical ideas and princesses that students are exploring, suggests good mathematics resources, and provides opportunities for the candidate and families to discuss strategies for ensuring the mathematical success of their students.
The candidate seeks out opportunities in			
the community to understand and			
interact with families.			

Formative:

- Unacceptable requires an automatic improvement plan.

Summative Evaluation:

- Exemplary rating requires supporting evidence.
- Unacceptable requires an improvement plan and student teaching to be extended or repeated if there is insufficient improvement in the time allotted.

Comments:

University Supervisor Signature: \qquad Date: \qquad

Cooperating Teacher Signature: \qquad Date: \qquad Intern Signature: \qquad Date: \qquad

