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1. Introduction

WHEN testing for infection of COVID-19, or other infectious diseases, it
is necessary to consider the potential for errors in diagnosis (false pos-

itives/negatives). The potential consequences of inaccurate diagnoses are
important to take into account, as those individuals may pose a danger to
others within their communities. We will use two approaches to understanding
these results using Bayesian methods.

Here is an explanation of some terminology that will be used:

• Sensitivity: Probability of correctly detecting the condition of those who ac-
tually have the condition (true positive probability, P (T+|D+))

• Specificity: Probability of correctly giving a negative result to those who do
not have the condition (true negative probability, P (T−|D−))

• False negative: Probability of a negative test result, given that an individual
has the condition. Denoted by: P (D+|T−)

2. Method One: LR-

IN order to calculate the probability of a false negative, we we will use the
negative likelihood ratio (LR-) and Bayes’ Rule. We define the negative like-

lihood ratio as:

LR− =
1− sensitivity

specificity
=

1− P (T+|D+)

P (T−|D−)
=
P (T−|D+)

P (T−|D−)

Using Bayes’ Rule we can rewrite the sensitivity and specificity as follows:

1− sensitivity = P (T−|D+) =
P (T−)P (D+|T−)

P (D+)

specificity = P (T−|D−) = P (T−)P (D−|T−)
P (D−)

Putting the previous results together, we get an equation that we can solve for
the false negative probability:

LR− =
P (D+|T−)
P (D−|T−)

· P (D
−)

P (D+)
= oddsD+|T− · oddsD−

We are able to fix LR− using known sensitivity and specificity values for
COVID-19 PCR tests. Using prior knowledge of a patient’s risk of exposure,
we can input different values for the odds of being disease negative. Solving
the equation will give us the odds of being disease positive given a negative
test result, and thus the chance of a false negative.

3. Method Two: Bayesian Framework

USING Bayesian statistics, we are able to find a distribution of values for the
false negative probability, known as the posterior distribution. The poste-

rior distribution is based on a likelihood function and prior distribution. We will
define our likelihood function based on data for n patients who have tested

negative for COVID, with similar risks of exposure and symptoms. Therefore,
X ∼ Binomial(n, p) where p = P (D+|T−).

Since p is unknown, we will assume a distribution of possible values that is
determined by the clinician based on prior information. The prior distribution
for the probability is

p ∼ Beta(α, β)

where alpha and beta are chosen based on the patient’s situation and knowl-
edge of the false negative rate in general. Based on these two distributions,
we arrive at our posterior distribution:

P (p|X = x) ∝ px(1− p)n−x pα−1(1− p)β−1

∝ px+α−1(1− p)n−x+β−1

Thus, p|X ∼ Beta(x + α, n − x + β). Using this distribution we can calculate
the MAP estimator to get a point estimate of the probability of false negative.
We can also calculate a high density credible interval (HDCI), to get a range
of the most probable values.

4. Results: Method One 
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Fagan's nomogram

Pre test % of disease = 10 % 
 Likelihood ratios (+;−)= 0.374 ; NA 

 posttest %. of disease (+;−) = 3.99 ; 27.2198 %
 Min Se = NA Min Sp = NA

Pre test % of disease = 50 % 
 Likelihood ratios (+;−)= 0.374 ; NA 

 posttest %. of disease (+;−) = 3.99 ; 27.2198 %
 Min Se = NA Min Sp = NA

Pre test % of disease = 90 % 
 Likelihood ratios (+;−)= 0.374 ; NA 

 posttest %. of disease (+;−) = 3.99 ; 27.2198 %
 Min Se = NA Min Sp = NA
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Fagan's nomogram

Pre test % of disease = 10 % 
 Likelihood ratios (+;−)= 0.697 ; NA 

 posttest %. of disease (+;−) = 7.19 ; 41.0714 %
 Min Se = NA Min Sp = NA

Pre test % of disease = 50 % 
 Likelihood ratios (+;−)= 0.697 ; NA 

 posttest %. of disease (+;−) = 7.19 ; 41.0714 %
 Min Se = NA Min Sp = NA

Pre test % of disease = 90 % 
 Likelihood ratios (+;−)= 0.697 ; NA 

 posttest %. of disease (+;−) = 7.19 ; 41.0714 %
 Min Se = NA Min Sp = NA

Nasal PCR Test Throat PCR Test 

For the nasal PCR test, we see that based on a pre-test probability of 10%,
the post-test probability of a false negative is equal to 4%. For a pre-test prob-
ability of 90%, the probability of a false negative is 77%.

5. Results: Method Two
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In both scenarios, the prior distribution used is Beta(4,40). This reflects the
belief in low probabilities of false negatives.

6. Discussion

BASED on the first method, that utilized the negative likelihood ratio, we
found that those individuals who have a lower pre-test probability of hav-

ing COVID-19 (10%) and receive a negative PCR test result, will have a lower
post-test probability (4%). This indicates that individuals who have been in-
volved in lower risk activities and are not presenting any symptoms, can have
increased confidence in a negative test result. However, as the pre-test prob-
ability increases, we see an increase in post-test probabilities as well. This
method is limited in that it requires the assumption of fixed values for sensitiv-
ity and specificity, even when these are not certain.

To address this limitation, the use of Bayesian methods allow the clinician to
incorporate distributions of values for both data and prior knowledge. In the
first scenario, the data is from a sample of size n = 100, while the second sce-
nario is from a sample of size n = 200. As, n increases, the likelihood function
has greater influence on the posterior distribution, while the prior distribution
becomes less important. This is evidenced by the mean for the posterior distri-
bution: µ = x+α

α+n+β . In the following table, we see MAP estimates and interval
limits for the false negative probabilities.

Scenario MAP Estimate Lower HDI Upper HDI
x=23 n=100 0.19 0.1241 0.2505
x=40 n=200 0.18 0.1325 0.2284
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