From Lagrange's Identity to the House of Representatives

Šarlota Svobodová \& David Duncan, Ph.D.

Department of Mathematics and Statistics
Coastal Carolina University

To see the terms subtracted for each state i, we expand the last term on the right-hand side as follows

$$
\begin{aligned}
& \sum_{\leq i<j \leq 50}\left(\frac{P_{i}}{\sqrt{H_{i}}} \sqrt{H_{j}}-\frac{P_{j}}{\sqrt{H_{j}}} \sqrt{H_{i}}\right)^{2} \\
&=\left(H \sum_{i=1}^{50} P_{i}{ }^{2}-P^{2}\right)-\frac{H\left(P_{1}\right)^{2}}{1 \cdot 2}-\frac{H\left(P_{1}\right)^{2}}{2 \cdot 3}-\ldots-\frac{H\left(P_{1}\right)^{2}}{\left(H_{1}-1\right)\left(H_{1}\right)} \\
&-\frac{H\left(P_{i}\right)^{2}}{1 \cdot 2}-\frac{H\left(P_{i}\right)^{2}}{2 \cdot 3}-\ldots-\frac{H\left(P_{i}\right)^{2}}{\left(H_{i}-1\right)\left(H_{i}\right)} \\
&-\frac{H\left(P_{50}\right)^{2}}{1 \cdot 2}-\frac{H\left(P_{50}\right)^{2}}{2 \cdot 3}-\ldots-\frac{H\left(P_{50}\right)^{2}}{\left(H_{50}-1\right)\left(H_{50}\right)} .
\end{aligned}
$$

Therefore, if we increase the number of seats assigned to state i from $H_{i}-1$ to H_{i}, the amount by which the equation

$$
\begin{aligned}
& \sum_{1 \leq i<j \leq 50}\left(\frac{P_{i}}{\sqrt{H_{i}}} \sqrt{H_{j}}-\frac{P_{j}}{\sqrt{H_{j}}} \sqrt{H_{i}}\right)^{2} \\
& \text { decreases is given by } \\
& \frac{H P_{i}^{2}}{\left(H_{i}-1\right)\left(H_{i}\right)} .
\end{aligned}
$$

4. Proof Using Lagrange's Identity

DEALLY, each representative will represents the same amount of people, that is, the equation $P_{i} / H_{i}=P_{j} / H_{j}$ holds for all states. Unfortunately, in real life, the chance of equality is negligible, therefore, it is needed to come up with as fair an allocation as possible. By rewriting the equation $P_{i} / H_{i}=P_{j} / H_{j}$ as

$$
\frac{P_{i}}{\sqrt{H_{i}}} \sqrt{H_{j}}-\frac{P_{j}}{\sqrt{H_{j}}} \sqrt{H_{i}}=0
$$

we aim to minimize

$$
\sum_{\underline{E}<j \leq 50}\left(\frac{P_{i}}{\sqrt{H_{i}}} \sqrt{H_{j}}-\frac{P_{j}}{\sqrt{H_{j}}} \sqrt{H_{i}}\right)^{2}
$$

subject to the constraint, $\sum_{i=1}^{50} H_{i}=H$

Now, by taking $a_{i}=\frac{P_{i}}{\sqrt{H_{i}}}, b_{i}=\sqrt{H_{i}}$, and $n=50$, in Lagrange's Identity, we can see that

By performing appropriate algebraic operations on the left-hand side of the equality, we can identify the following equation:

$$
\begin{aligned}
& \sum_{i<j \leq 50}\left(\frac{P_{i}}{\sqrt{H_{i}}} \sqrt{H_{j}}-\frac{P_{j}}{\sqrt{H_{j}}} \sqrt{H_{i}}\right)^{2} \\
& \quad=H \sum_{i=1}^{50} P_{i}{ }^{2}-P^{2}-H \sum_{i=1}^{50}\left(\frac{\left(P_{i}\right)^{2}}{1 \cdot 2}+\frac{\left(P_{i}\right)^{2}}{2 \cdot 3}+\ldots+\frac{\left(P_{i}\right)^{2}}{\left(H_{i}-1\right)\left(H_{i}\right)}\right)
\end{aligned}
$$

5. Conclusion

T° see the similarity with the priority value table from step 2 of The Hunt ington's Algorithm, let's denote two points. Firstly, H is a common factor of all the terms being subtracted, hence it can be omitted. Secondly, all terms being subtracted are squares of positive real numbers, therefore, we can take a square root of all terms without changing the ordering.

The table below shows a real life example of a seat allocation following the 2020 Census. The first column shows the shares of seats based on the population of the state, while the second column shows the current number of seats for the state based on the method of equal proportions.

State	Share of seats	Number of seats
California	$\frac{39,538,223}{331,4,9291}(435) \approx 51.891$	52
South Carolina	$\frac{5,118,425}{331,497,281}(435) \approx 6.718$	7
Rhode Island	$\frac{1,097,379}{331,49,281}(435) \approx 1.440$	2

References

[1] Wright, T. (2021). From Cauchy-Schwarz to the House of Representatives: Applications of Lagrange's identity. Mathematics Magazine, 94(4), 244-256
https://doi.org/10.1080/0025570x.2021.1951575
[2] File:seal of the United States house of representatives.svg. Wikimedps://commons.wikimedia.org/w/index.php?curid=3401153
[3] Bureau, U. S. C. (2021, November 22). About Congressional apportionment Census.gov. Retrieved October 28, 2022, from https://www.census.gov/topics/public sector/congressional-apportionment/about.html
[4] Bureau, U. S. C. (2021, October 8). 2020 census Apportionment Results. Census.gov Retrieved October 30, 2022, from https://www.census.gov/data/tables/2020/dec/2020 apportionment-data.htmi

