Math Contest Level 2 - March 11, 2011
 Coastal Carolina University

1. Beginning with 1 , all the positive integers are written successively, beginning

$$
1234567891011121314 \ldots
$$

What digit appears in the $2011^{\text {th }}$ position?
(a) 6
(b) 7
(c) 8
(d) 9
(e) 0
2. Given that $-2 i$ is a root of the polynomial $p(x)=x^{4}+7 x^{3}+16 x^{2}+28 x+48$, the other three roots of p are:
(a) $-i,-3,-4$
(b) $-i, 3,4$
(c) $2 i, 3,4$
(d) $2 i,-3,-4$
(e) $2 i,-2,-6$
3. The ratio of the area of a circle to the area of an inscribed square is
(a) $\frac{2}{\pi}$
(b) 2π
(c) $\frac{\pi}{2}$
(d) $\frac{1}{\pi}$
(e) π
4. Evaluate $\tan \frac{\pi}{8}$.
(a) $\sqrt{\frac{2+\sqrt{2}}{2-\sqrt{2}}}$
(b) $\sqrt{\frac{2-\sqrt{2}}{2+\sqrt{2}}}$
(c) $\sqrt{\frac{2+\sqrt{2+\sqrt{2}}}{2-\sqrt{2+\sqrt{2}}}}$
(d) $\frac{\sqrt{2}}{2}$
(e) $\frac{1}{2}$
5. If the number 2011! were written in base 14, how many zeros would it end with?
(a) 287
(b) 328
(c) 333
(d) 334
(e) None of these
6. Let C be a cube where the length of its diagonal is the same as its volume. What is the length of each side?
(a) 1
(b) $2^{1 / 4}$
(c) $2^{1 / 3}$
(d) $3^{1 / 4}$
(e) None of these
7. Suppose x and y are real numbers such that $(x+5)^{2}+(y-12)^{2}=196$. What is the minimum value of $x^{2}+y^{2}$?
(a) $\sqrt{2}$
(b) $\sqrt{3}$
(c) 1
(d) $1 / 2$
(e) None of these
8. Which of the following is/are true?
I. $\arcsin (-x)=-\arcsin x$
II. $\arccos (-x)=\pi-\arccos x$
III. $\arctan (-x)=\arctan x$
IV. $\sin (\arcsin x)=x$ provided $x \in[-1,1]$
(a) I only
(c) II and IV only
(e) I, II, III, and IV
(b) I and III only
(d) I, II, and IV only
9. What is the smallest positive integer $n>2010$ such that $\binom{n}{2011}$ is divisible by $\binom{n}{2010}$ but not equal to it?
(a) 2011
(b) 4021
(c) 6033
(d) 8043
(e) None of these
10. A circle is inscribed in a square. In any one corner of the square is an isosceles right triangle which shares a vertex with the square and has hypotenuse tangent to the circle. What is the ratio of the area of this triangle to the area of the square?
(a) $\frac{3-2 \sqrt{2}}{4}$
(b) $\frac{3-2 \sqrt{2}}{2}$
(c) $\frac{4-2 \sqrt{2}}{3}$
(d) $\frac{4-3 \sqrt{2}}{4}$
(e) None of these
11. The sum of a certain number of positive integers is 31 . The largest value that their product can be is
(a) 78,672
(b) 80,448
(c) 78,748
(d) 80,484
(e) 78,732
12. Given that $1+\sqrt{2}$ is a root of $p(x)=x^{3}+b x^{2}+c x+1$, where b and c are rational, what is the value of $b+c$?
(a) -3
(b) -2
(c) -1
(d) 0
(e) None of these
13. Let x be a real number. If $\csc x+\cot x=2$, evaluate $\csc x-\cot x$.
(a) $\frac{1}{2}$
(b) $\frac{\sqrt{2}}{4}$
(c) $\frac{1}{4}$
(d) $2 \sqrt{3}$
(e) None of these
14. Let M be a real number such that the inequality

$$
\sqrt{x-3}+\sqrt{6-x} \geq M
$$

has a solution. The maximum value of M is
(a) $\sqrt{6}-\sqrt{3}$
(b) $\sqrt{3}$
(c) $\sqrt{6}+\sqrt{3}$
(d) $\sqrt{6}$
(e) None of these
15. Find the value of $\frac{1}{\log _{2}(2011!)}+\frac{1}{\log _{3}(2011!)}+\cdots+\frac{1}{\log _{2011}(2011!)}$.
(a) 1
(b) 2011
(c) $\ln (2011)$
(d) $\ln (2)$
(e) None of these
16. The solution set of the inequality $\left|x^{2}-2 x-2\right|>\left|x^{2}-2 x+2\right|$ is
(a) $(-2,0)$
(b) $(-4,-2)$
(c) $(0,3 / 2)$
(d) $(0,4)$
(e) None of these
17. Suppose that A, B and C are the vertices of a triangle such that $|\overline{A B}|=6,|\overline{B C}|=8$, and $|\overline{A C}|=10$. Two circles of equal radii are tangent to each other and two sides of the triangle. What is the common diameter of the two circles?
(a) $2 \sqrt{3}$
(b) $\frac{20}{7}$
(c) $\frac{12}{5}$
(d) 3
(e) None of these
18. Consider an acute angle α such that the equation

$$
\cot \alpha+4 x \cos \alpha+x^{2}=0
$$

has a repeated root with respect to the variable x. Then the angle α, in radians, is
(a) $\frac{\pi}{6}$
(b) $\frac{\pi}{12}$ or $\frac{5 \pi}{12}$
(c) $\frac{\pi}{6}$ or $\frac{5 \pi}{12}$
(d) $\frac{\pi}{12}$
(e) None of these
19. Let A and B denote the points of intersection of the circles $x^{2}+y^{2}-6 x+4 y=3$ and $x^{2}+y^{2}+4 x-4 y=17$. What is the slope of segment $A B ?$
(a) $\frac{5}{4}$
(b) $\frac{3}{4}$
(c) $\frac{1}{2}$
(d) $\frac{1}{4}$
(e) None of these
20. At the grocery store, Kristen bought 2 apples, 3 bananas and 4 cantaloupes for $\$ 8$. Justin bought 1 apple, 2 bananas and 1 cantaloupe for $\$ 3$ and Charlie bought 5 apples, 1 banana and 3 cantaloupes for $\$ 9$. How much would 1 apple, 1 banana, and 1 cantaloupe cost?
(a) $\$ 2.00$
(b) $\$ 2.25$
(c) $\$ 2.50$
(d) $\$ 2.75$
(e) None of these
21. If $f(x)+2 f(1-x)=x^{2}$ for all x, then $3 f(x)=$
(a) x^{2}
(b) $x^{2}-4 x+2$
(c) $x^{2}-2 x+1$
(d) $x^{2}+2 x-1$
(e) None of these
22. An investor with $\$ 20,000$ wants to invest in four different mutual funds. The minimum investment in each mutual fund is 2, 2, 3 and 4 thousand dollars. How many investment strategies are possible if an investment must be made in each mutual fund (assume investments are made in units of one thousand dollars)?
(a) 220
(b) 230
(c) 240
(d) 250
(e) None of these
23. Solve the inequality

$$
\sqrt{\log _{2} x-1}+\frac{1}{2} \log _{\frac{1}{2}} x^{3}+2>0
$$

(a) $[2,3)$
(b) $(2,3]$
(c) $[2,4)$
(d) $(2,4]$
(e) None of these
24. Three spheres of radius 1 are pairwise tangent and resting on a horizontal table. A fourth sphere of the same size is placed on top so that it lies tangent with the other three. How high is the top of the fourth sphere from the surface of the table?
(a) $2 \sqrt{3}$
(b) $2+2 \sqrt{3}$
(c) $\frac{2 \sqrt{3}+2 \sqrt{2}}{\sqrt{3}}$
(d) $\frac{4 \sqrt{2}}{\sqrt{3}}$
(e) None of these
25. Find the minimum value of

$$
|\sin x+\cos x+\tan x+\cot x+\sec x+\csc x| .
$$

(a) $2 \sqrt{2}-1$
(b) $2 \sqrt{2}+1$
(c) $\sqrt{2}-2$
(d) $\sqrt{2}+2$
(e) None of these

